S-Dreamer commited on
Commit
da9e7af
Β·
verified Β·
1 Parent(s): d7c0755

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -9
app.py CHANGED
@@ -1,12 +1,19 @@
 
1
  import streamlit as st
 
 
2
  from utils import set_page_config, display_sidebar
3
  import os
4
 
5
- # Set page configuration
 
6
  set_page_config()
7
 
8
- # Title and description
9
  st.title("CodeGen Hub")
 
 
 
10
  st.markdown("""
11
  Welcome to CodeGen Hub - A platform for training and using code generation models with Hugging Face integration.
12
 
@@ -20,52 +27,66 @@ st.markdown("""
20
  Navigate through the different sections using the sidebar menu.
21
  """)
22
 
23
- # Display sidebar
 
24
  display_sidebar()
25
 
26
- # Create the session state for storing information across app pages
 
27
  if 'datasets' not in st.session_state:
 
 
28
  st.session_state.datasets = {}
29
 
30
  if 'trained_models' not in st.session_state:
 
 
31
  st.session_state.trained_models = {}
32
 
33
  if 'training_logs' not in st.session_state:
 
 
34
  st.session_state.training_logs = []
35
 
36
  if 'training_progress' not in st.session_state:
 
 
37
  st.session_state.training_progress = {}
38
 
39
-
40
-
41
- # Display getting started card
42
  st.subheader("Getting Started")
43
  col1, col2 = st.columns(2)
44
 
45
  with col1:
 
46
  st.info("""
47
  1. πŸ“Š Start by uploading or selecting a Python code dataset in the **Dataset Management** section.
48
  2. πŸ› οΈ Configure and train your model in the **Model Training** section.
49
  """)
50
 
51
  with col2:
 
52
  st.info("""
53
  3. πŸ’‘ Generate code predictions using your trained models in the **Code Generation** section.
54
  4. πŸ”„ Access your models on Hugging Face Hub for broader use.
55
  """)
56
 
57
- # Display platform statistics if available
58
  st.subheader("Platform Statistics")
59
  col1, col2, col3 = st.columns(3)
60
 
61
  with col1:
 
62
  st.metric("Datasets Available", len(st.session_state.datasets))
63
 
64
  with col2:
 
65
  st.metric("Trained Models", len(st.session_state.trained_models))
66
 
67
  with col3:
68
- # Calculate active training jobs
69
  active_jobs = sum(1 for progress in st.session_state.training_progress.values()
70
  if progress.get('status') == 'running')
 
71
  st.metric("Active Training Jobs", active_jobs)
 
 
1
+ ```python
2
  import streamlit as st
3
+ # Import the `set_page_config` and `display_sidebar` functions from the `utils` module.
4
+ # These functions are responsible for setting up the Streamlit app's page configuration and displaying the sidebar, respectively.
5
  from utils import set_page_config, display_sidebar
6
  import os
7
 
8
+ # Set the page configuration for the Streamlit app.
9
+ # This function sets the app's title, icon, layout, and other parameters.
10
  set_page_config()
11
 
12
+ # Display the main title of the Streamlit app.
13
  st.title("CodeGen Hub")
14
+
15
+ # Display the description of the Streamlit app using Markdown formatting.
16
+ # This provides a more formatted and readable way to present the app's purpose and features.
17
  st.markdown("""
18
  Welcome to CodeGen Hub - A platform for training and using code generation models with Hugging Face integration.
19
 
 
27
  Navigate through the different sections using the sidebar menu.
28
  """)
29
 
30
+ # Display the sidebar for the Streamlit app.
31
+ # The sidebar will contain navigation options and other functionality.
32
  display_sidebar()
33
 
34
+ # Create session state variables to store information across app pages.
35
+ # These variables will persist data between user interactions.
36
  if 'datasets' not in st.session_state:
37
+ # Initialize the 'datasets' dictionary in the session state.
38
+ # This dictionary will store information about the uploaded datasets.
39
  st.session_state.datasets = {}
40
 
41
  if 'trained_models' not in st.session_state:
42
+ # Initialize the 'trained_models' dictionary in the session state.
43
+ # This dictionary will store information about the trained models.
44
  st.session_state.trained_models = {}
45
 
46
  if 'training_logs' not in st.session_state:
47
+ # Initialize the 'training_logs' list in the session state.
48
+ # This list will store the training logs for the models.
49
  st.session_state.training_logs = []
50
 
51
  if 'training_progress' not in st.session_state:
52
+ # Initialize the 'training_progress' dictionary in the session state.
53
+ # This dictionary will store the progress information for the training jobs.
54
  st.session_state.training_progress = {}
55
 
56
+ # Display a "Getting Started" section with instructions for the user.
 
 
57
  st.subheader("Getting Started")
58
  col1, col2 = st.columns(2)
59
 
60
  with col1:
61
+ # Display the first set of instructions in the left column.
62
  st.info("""
63
  1. πŸ“Š Start by uploading or selecting a Python code dataset in the **Dataset Management** section.
64
  2. πŸ› οΈ Configure and train your model in the **Model Training** section.
65
  """)
66
 
67
  with col2:
68
+ # Display the second set of instructions in the right column.
69
  st.info("""
70
  3. πŸ’‘ Generate code predictions using your trained models in the **Code Generation** section.
71
  4. πŸ”„ Access your models on Hugging Face Hub for broader use.
72
  """)
73
 
74
+ # Display platform statistics if available.
75
  st.subheader("Platform Statistics")
76
  col1, col2, col3 = st.columns(3)
77
 
78
  with col1:
79
+ # Display the number of datasets available.
80
  st.metric("Datasets Available", len(st.session_state.datasets))
81
 
82
  with col2:
83
+ # Display the number of trained models.
84
  st.metric("Trained Models", len(st.session_state.trained_models))
85
 
86
  with col3:
87
+ # Calculate the number of active training jobs.
88
  active_jobs = sum(1 for progress in st.session_state.training_progress.values()
89
  if progress.get('status') == 'running')
90
+ # Display the number of active training jobs.
91
  st.metric("Active Training Jobs", active_jobs)
92
+ ```