import os import requests import tempfile import streamlit as st from huggingface_hub import ( HfApi, login, create_repo, delete_repo, upload_file, HfFolder, ) from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError class HuggingFaceClient: def __init__(self, token=None): self.token = token self.api = HfApi(token=token) def authenticate(self, token): """Authenticate with Hugging Face API using token""" self.token = token self.api = HfApi(token=token) try: login(token=token) whoami = self.api.whoami() return True, whoami except Exception as e: return False, str(e) def get_user_models(self): """Get all models created by the logged-in user""" try: # First try to get username from whoami API call whoami = self.api.whoami() username = whoami.get("name") # Fallback to the HF_USERNAME secret if available if not username and os.environ.get("HF_USERNAME"): username = os.environ.get("HF_USERNAME") # Get all models for this user using the list_models API user_models = list(self.api.list_models(author=username)) return user_models except Exception as e: st.error(f"Error fetching models: {str(e)}") return [] def get_model_info(self, repo_id): """Get detailed information about a specific model""" try: model_info = self.api.model_info(repo_id) return model_info except RepositoryNotFoundError: st.error(f"Repository {repo_id} not found") return None except Exception as e: st.error(f"Error fetching model info: {str(e)}") return None def create_model_repository( self, repo_name, is_private=False, exist_ok=False, repo_type="model" ): """Create a new model repository on Hugging Face""" try: response = create_repo( repo_id=repo_name, token=self.token, private=is_private, exist_ok=exist_ok, repo_type=repo_type, ) return True, response except Exception as e: return False, str(e) def delete_model_repository(self, repo_id): """Delete a model repository from Hugging Face""" try: response = delete_repo(repo_id=repo_id, token=self.token) return True, "Repository deleted successfully" except Exception as e: return False, str(e) def upload_model_files(self, repo_id, files, commit_message="Upload model files"): """Upload model files to a repository""" try: uploaded_files = [] for file_path, file_content in files.items(): with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(file_content) temp_file_path = temp_file.name upload_response = upload_file( path_or_fileobj=temp_file_path, path_in_repo=file_path, repo_id=repo_id, token=self.token, commit_message=commit_message, ) uploaded_files.append(upload_response) # Clean up temporary file os.unlink(temp_file_path) return True, uploaded_files except Exception as e: return False, str(e) def update_model_card(self, repo_id, model_card_content): """Update the README.md (model card) of a repository""" try: with tempfile.NamedTemporaryFile(delete=False, mode="w") as temp_file: temp_file.write(model_card_content) temp_file_path = temp_file.name upload_response = upload_file( path_or_fileobj=temp_file_path, path_in_repo="README.md", repo_id=repo_id, token=self.token, commit_message="Update model card", ) # Clean up temporary file os.unlink(temp_file_path) return True, upload_response except Exception as e: return False, str(e) def get_model_tags(self): """Get available model tags from Hugging Face Hub""" try: # This is a simplified version; in a real app, you'd fetch actual tags from the HF API tags = [ "text-classification", "token-classification", "question-answering", "translation", "summarization", "text-generation", "fill-mask", "conversational", "image-classification", "object-detection", "audio-classification", "automatic-speech-recognition", ] return tags except Exception as e: st.error(f"Error fetching tags: {str(e)}") return []