import streamlit as st import os from utils.api_client import HuggingFaceClient def check_authentication(): """Handle user authentication with Hugging Face API""" st.markdown( """

🤗 Hugging Face Model Manager

Manage your machine learning models and publish to the Hugging Face Model Hub

""", unsafe_allow_html=True, ) st.markdown( """

Welcome to Hugging Face Model Manager

This application allows you to:

""", unsafe_allow_html=True, ) with st.form("auth_form"): st.subheader("Login with Hugging Face API Token") # Info alert about creating a token st.info( """ To use this application, you need a Hugging Face API token. You can create one at: [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens) Make sure to grant **write** access if you want to upload models. """ ) # Token input token = st.text_input("Enter your Hugging Face API token", type="password") # Get token from environment or Secrets if available and not provided if not token: if os.environ.get("HF_TOKEN"): token = os.environ.get("HF_TOKEN") st.success("Using API token from Secrets.") elif os.environ.get("HF_API_TOKEN"): token = os.environ.get("HF_API_TOKEN") st.success("Using API token from environment variables.") submitted = st.form_submit_button("Login", use_container_width=True) if submitted and token: # Authenticate with Hugging Face with st.spinner("Authenticating..."): client = HuggingFaceClient() success, user_info = client.authenticate(token) if success: st.session_state.authenticated = True st.session_state.api_token = token st.session_state.username = user_info.get("name", "User") st.session_state.client = client st.success( f"Successfully authenticated as {st.session_state.username}" ) st.rerun() else: st.error(f"Authentication failed: {user_info}") elif submitted: st.error("Please enter your Hugging Face API token") def logout(): """Log out the current user""" for key in list(st.session_state.keys()): del st.session_state[key] st.session_state.authenticated = False st.session_state.page = "home" st.rerun()