Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,103 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
|
4 |
MODEL_ID = "Salesforce/codet5-large"
|
5 |
|
6 |
-
with gr.Blocks(fill_height=True, theme=gr.themes.Soft()) as demo:
|
7 |
-
with gr.Sidebar():
|
8 |
-
gr.Markdown("## 🤖 Inference Provider")
|
9 |
-
gr.Markdown(
|
10 |
-
f"This Space showcases the `{MODEL_ID}` model, served via the Hugging Face Inference API.\n\n"
|
11 |
-
"🔐 Sign in with your Hugging Face account to use this API."
|
12 |
-
)
|
13 |
-
login_button = gr.LoginButton("🔐 Sign in")
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
gr.Markdown("# 🧠 CodeT5 Inference UI")
|
20 |
|
21 |
-
|
22 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# Load HF inference API model
|
25 |
-
gr.load(
|
26 |
-
f"models/{MODEL_ID}",
|
27 |
-
accept_token=login_button,
|
28 |
-
provider="hf-inference"
|
29 |
-
)
|
30 |
|
31 |
-
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Enhanced Gradio UI for the Salesforce/codet5-large model using the Hugging Face Inference API.
|
5 |
+
Adheres to best practices, PEP8, flake8, and the Zen of Python.
|
6 |
+
"""
|
7 |
+
|
8 |
import gradio as gr
|
9 |
|
10 |
MODEL_ID = "Salesforce/codet5-large"
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def prepare_payload(prompt: str, max_tokens: int) -> dict:
|
14 |
+
"""
|
15 |
+
Prepare the payload dictionary for the Hugging Face inference call.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
prompt (str): The input code containing `<extra_id_0>`.
|
19 |
+
max_tokens (int): Maximum number of tokens for generation.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
dict: Payload for the model API call.
|
23 |
+
"""
|
24 |
+
return {"inputs": prompt, "parameters": {"max_length": max_tokens}}
|
25 |
+
|
26 |
+
|
27 |
+
def extract_generated_text(api_response: dict) -> str:
|
28 |
+
"""
|
29 |
+
Extract generated text from the API response.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
api_response (dict): The response dictionary from the model API call.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
str: The generated text, or string representation of the response.
|
36 |
+
"""
|
37 |
+
return api_response.get("generated_text", str(api_response))
|
38 |
|
|
|
39 |
|
40 |
+
def main():
|
41 |
+
with gr.Blocks(fill_height=True, theme=gr.themes.Soft()) as demo:
|
42 |
+
with gr.Sidebar():
|
43 |
+
gr.Markdown("## 🤖 Inference Provider")
|
44 |
+
gr.Markdown(
|
45 |
+
(
|
46 |
+
"This Space showcases the `{}` model, served via the Hugging Face Inference API.\n\n"
|
47 |
+
"Sign in with your Hugging Face account to access the model."
|
48 |
+
).format(MODEL_ID)
|
49 |
+
)
|
50 |
+
login_button = gr.LoginButton("🔐 Sign in")
|
51 |
+
gr.Markdown("---")
|
52 |
+
gr.Markdown(f"**Model:** `{MODEL_ID}`")
|
53 |
+
gr.Markdown("[📄 View Model Card](https://huggingface.co/Salesforce/codet5-large)")
|
54 |
+
|
55 |
+
gr.Markdown("# 🧠 CodeT5 Inference UI")
|
56 |
+
gr.Markdown("Enter your Python code snippet with `<extra_id_0>` as the mask token.")
|
57 |
+
|
58 |
+
with gr.Row():
|
59 |
+
with gr.Column(scale=1):
|
60 |
+
code_input = gr.Code(
|
61 |
+
label="Input Code",
|
62 |
+
language="python",
|
63 |
+
value="def greet(user): print(f'hello <extra_id_0>!')",
|
64 |
+
lines=10,
|
65 |
+
autofocus=True,
|
66 |
+
)
|
67 |
+
max_tokens = gr.Slider(
|
68 |
+
minimum=8, maximum=128, value=32, step=8, label="Max Tokens"
|
69 |
+
)
|
70 |
+
submit_btn = gr.Button("🚀 Run Inference")
|
71 |
+
with gr.Column(scale=1):
|
72 |
+
output_text = gr.Textbox(
|
73 |
+
label="Inference Output",
|
74 |
+
lines=10,
|
75 |
+
interactive=False,
|
76 |
+
placeholder="Model output will appear here...",
|
77 |
+
)
|
78 |
+
|
79 |
+
# Load the model from Hugging Face Inference API.
|
80 |
+
model_iface = gr.load(
|
81 |
+
f"models/{MODEL_ID}",
|
82 |
+
accept_token=login_button,
|
83 |
+
provider="hf-inference",
|
84 |
+
)
|
85 |
+
|
86 |
+
# Chain click events: prepare payload -> API call -> extract output.
|
87 |
+
submit_btn.click(
|
88 |
+
fn=prepare_payload,
|
89 |
+
inputs=[code_input, max_tokens],
|
90 |
+
outputs=model_iface,
|
91 |
+
api_name="prepare_payload",
|
92 |
+
).then(
|
93 |
+
fn=extract_generated_text,
|
94 |
+
inputs=model_iface,
|
95 |
+
outputs=output_text,
|
96 |
+
api_name="extract_output",
|
97 |
+
)
|
98 |
+
|
99 |
+
demo.launch()
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
if __name__ == "__main__":
|
103 |
+
main()
|