S-Dreamer's picture
Update app.py
81f890a verified
raw
history blame
3.15 kB
# Import the necessary libraries:
# - `gradio` is a library for creating interactive web interfaces
# - `typing` provides type annotations for Python
# - `data_loader` is a custom module that contains functions to read different types of data
import gradio as gr
from typing import Dict, Any
from data_loader import read_dask_data, read_polars_data, read_another_dask_data
# Define a function called `load_and_process_data` that takes a dataset choice and the number of rows to display
# This function is responsible for loading and processing the data based on the user's input
def load_and_process_data(dataset_choice: str, num_rows: int) -> Dict[str, Any]:
try:
# Create a mapping of dataset choices to their corresponding data loading functions
dataset_mapping = {
"Dask Data": read_dask_data,
"Polars Data": read_polars_data,
"Another Dask Data": read_another_dask_data
}
# Fetch the appropriate data loading function based on the user's dataset choice
data_loader = dataset_mapping.get(dataset_choice)
if not data_loader:
# If the dataset choice is invalid, return an error message
return {"error": "Invalid dataset choice."}
# Load the data using the selected data loading function
data = data_loader()
# Process the data to show the specified number of rows
processed_data = data.head(num_rows)
# Convert the processed data to a dictionary for JSON serialization
return {
"processed_data": processed_data.to_dict()
}
except Exception as e:
# If an exception occurs during data processing, log the error
# and return an error message
print(f"Error processing data: {str(e)}")
return {"error": "Unable to process data. Please check the logs for details."}
# Define a function called `create_interface` that creates a Gradio interface
# The interface allows the user to select a dataset and the number of rows to display
def create_interface():
# Define the input components for the interface
dataset_choice = gr.components.Dropdown(
choices=["Dask Data", "Polars Data", "Another Dask Data"],
label="Select Dataset"
)
num_rows = gr.components.Slider(
minimum=1, maximum=100, value=5, label="Number of Rows to Display"
)
# Define the layout of the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Enhanced Dataset Loader Demo")
gr.Markdown("Interact with various datasets and select the amount of data to display.")
with gr.Row():
dataset_choice.render()
num_rows.render()
processed_data_output = gr.JSON(label="Processed Data")
processed_data_output.render()
# Add the input components and the data processing function to the interface
demo.add(dataset_choice, num_rows, processed_data_output, load_and_process_data)
# Launch the Gradio interface
demo.launch()
# Execute the `create_interface` function when the script is run
if __name__ == "__main__":
create_interface()