Spaces:
Runtime error
Runtime error
# Import the necessary libraries: | |
# - `gradio` is a library for creating interactive web interfaces | |
# - `typing` provides type annotations for Python | |
# - `data_loader` is a custom module that contains functions to read different types of data | |
import gradio as gr | |
from typing import Dict, Any | |
from data_loader import read_dask_data, read_polars_data, read_another_dask_data | |
# Define a function called `load_and_process_data` that takes a dataset choice and the number of rows to display | |
# This function is responsible for loading and processing the data based on the user's input | |
def load_and_process_data(dataset_choice: str, num_rows: int) -> Dict[str, Any]: | |
try: | |
# Create a mapping of dataset choices to their corresponding data loading functions | |
dataset_mapping = { | |
"Dask Data": read_dask_data, | |
"Polars Data": read_polars_data, | |
"Another Dask Data": read_another_dask_data | |
} | |
# Fetch the appropriate data loading function based on the user's dataset choice | |
data_loader = dataset_mapping.get(dataset_choice) | |
if not data_loader: | |
# If the dataset choice is invalid, return an error message | |
return {"error": "Invalid dataset choice."} | |
# Load the data using the selected data loading function | |
data = data_loader() | |
# Process the data to show the specified number of rows | |
processed_data = data.head(num_rows) | |
# Convert the processed data to a dictionary for JSON serialization | |
return { | |
"processed_data": processed_data.to_dict() | |
} | |
except Exception as e: | |
# If an exception occurs during data processing, log the error | |
# and return an error message | |
print(f"Error processing data: {str(e)}") | |
return {"error": "Unable to process data. Please check the logs for details."} | |
# Define a function called `create_interface` that creates a Gradio interface | |
# The interface allows the user to select a dataset and the number of rows to display | |
def create_interface(): | |
# Define the input components for the interface | |
dataset_choice = gr.components.Dropdown( | |
choices=["Dask Data", "Polars Data", "Another Dask Data"], | |
label="Select Dataset" | |
) | |
num_rows = gr.components.Slider( | |
minimum=1, maximum=100, value=5, label="Number of Rows to Display" | |
) | |
# Define the layout of the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Enhanced Dataset Loader Demo") | |
gr.Markdown("Interact with various datasets and select the amount of data to display.") | |
with gr.Row(): | |
dataset_choice.render() | |
num_rows.render() | |
processed_data_output = gr.JSON(label="Processed Data") | |
processed_data_output.render() | |
# Add the input components and the data processing function to the interface | |
demo.add(dataset_choice, num_rows, processed_data_output, load_and_process_data) | |
# Launch the Gradio interface | |
demo.launch() | |
# Execute the `create_interface` function when the script is run | |
if __name__ == "__main__": | |
create_interface() | |