import gradio as gr from typing import Dict, Any from data_loader import read_dask_data, read_polars_data, read_another_dask_data def load_and_process_data(dataset_choice: str, num_rows: int) -> Dict[str, Any]: """ Load and process data based on the user's choice and specified number of rows. Args: dataset_choice (str): The dataset to load. num_rows (int): The number of rows to display. Returns: Dict[str, Any]: A dictionary containing the processed data or error message. """ dataset_mapping = { "Dask Data": read_dask_data, "Polars Data": read_polars_data, "Another Dask Data": read_another_dask_data } data_loader = dataset_mapping.get(dataset_choice) if not data_loader: return {"error": "Invalid dataset choice."} try: data = data_loader() processed_data = data.head(num_rows) return {"processed_data": processed_data.to_dict()} except Exception as e: return {"error": f"Data processing failed: {str(e)}"} def create_interface(): """ Create and launch the Gradio interface for data selection and display. """ with gr.Blocks() as demo: gr.Markdown("# Enhanced Dataset Loader Demo") gr.Markdown("Interact with various datasets and select the amount of data to display.") with gr.Row(): dataset_choice = gr.Dropdown( choices=["Dask Data", "Polars Data", "Another Dask Data"], label="Select Dataset" ) num_rows = gr.Slider( minimum=1, maximum=100, value=5, label="Number of Rows to Display" ) processed_data_output = gr.JSON(label="Processed Data") dataset_choice.render() num_rows.render() processed_data_output.render() demo.add(dataset_choice, num_rows, processed_data_output, load_and_process_data) demo.launch() if __name__ == "__main__": create_interface()