Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,18 @@ from huggingface_hub import from_pretrained_keras
|
|
8 |
def resize_image(img_in,input_height,input_width):
|
9 |
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def visualize_model_output(prediction, img):
|
12 |
unique_classes = np.unique(prediction[:,:,0])
|
13 |
rgb_colors = {'0' : [255, 255, 255],
|
@@ -48,7 +60,21 @@ def visualize_model_output(prediction, img):
|
|
48 |
added_image = cv2.addWeighted(img,0.5,output,0.1,0)
|
49 |
return added_image
|
50 |
|
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def do_prediction(model_name, img):
|
53 |
img_org = np.copy(img)
|
54 |
model = from_pretrained_keras(model_name)
|
@@ -77,12 +103,52 @@ def do_prediction(model_name, img):
|
|
77 |
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
78 |
n_classes=model.layers[len(model.layers)-1].output_shape[3]
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
if img.shape[0] < img_height_model:
|
81 |
img = resize_image(img, img_height_model, img.shape[1])
|
82 |
|
83 |
if img.shape[1] < img_width_model:
|
84 |
img = resize_image(img, img.shape[0], img_width_model)
|
85 |
|
|
|
|
|
|
|
86 |
marginal_of_patch_percent = 0.1
|
87 |
margin = int(marginal_of_patch_percent * img_height_model)
|
88 |
width_mid = img_width_model - 2 * margin
|
|
|
8 |
def resize_image(img_in,input_height,input_width):
|
9 |
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
10 |
|
11 |
+
def otsu_copy_binary(img):
|
12 |
+
img_r=np.zeros((img.shape[0],img.shape[1],3))
|
13 |
+
img1=img[:,:,0]
|
14 |
+
|
15 |
+
retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
16 |
+
|
17 |
+
img_r[:,:,0]=threshold1
|
18 |
+
img_r[:,:,1]=threshold1
|
19 |
+
img_r[:,:,2]=threshold1
|
20 |
+
|
21 |
+
return img_r
|
22 |
+
|
23 |
def visualize_model_output(prediction, img):
|
24 |
unique_classes = np.unique(prediction[:,:,0])
|
25 |
rgb_colors = {'0' : [255, 255, 255],
|
|
|
60 |
added_image = cv2.addWeighted(img,0.5,output,0.1,0)
|
61 |
return added_image
|
62 |
|
63 |
+
def return_num_columns(img):
|
64 |
+
model_classifier = from_pretrained_keras("SBB/eynollah-column-classifier")
|
65 |
+
img_1ch = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
66 |
|
67 |
+
img_1ch = img_1ch / 255.0
|
68 |
+
img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST)
|
69 |
+
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
|
70 |
+
img_in[0, :, :, 0] = img_1ch[:, :]
|
71 |
+
img_in[0, :, :, 1] = img_1ch[:, :]
|
72 |
+
img_in[0, :, :, 2] = img_1ch[:, :]
|
73 |
+
|
74 |
+
label_p_pred = model.predict(img_in, verbose=0)
|
75 |
+
num_col = np.argmax(label_p_pred[0]) + 1
|
76 |
+
return num_col
|
77 |
+
|
78 |
def do_prediction(model_name, img):
|
79 |
img_org = np.copy(img)
|
80 |
model = from_pretrained_keras(model_name)
|
|
|
103 |
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
104 |
n_classes=model.layers[len(model.layers)-1].output_shape[3]
|
105 |
|
106 |
+
|
107 |
+
|
108 |
+
img_org = np.copy(img)
|
109 |
+
img_height_h = img_org.shape[0]
|
110 |
+
img_width_h = img_org.shape[1]
|
111 |
+
|
112 |
+
#model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens)
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
if num_col_classifier == 1:
|
117 |
+
img_w_new = 1000
|
118 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
119 |
+
|
120 |
+
elif num_col_classifier == 2:
|
121 |
+
img_w_new = 1500
|
122 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
123 |
+
|
124 |
+
elif num_col_classifier == 3:
|
125 |
+
img_w_new = 2000
|
126 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
127 |
+
|
128 |
+
elif num_col_classifier == 4:
|
129 |
+
img_w_new = 2500
|
130 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
131 |
+
elif num_col_classifier == 5:
|
132 |
+
img_w_new = 3000
|
133 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
134 |
+
else:
|
135 |
+
img_w_new = 4000
|
136 |
+
img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
|
137 |
+
img_resized = resize_image(img,img_h_new, img_w_new )
|
138 |
+
|
139 |
+
img = otsu_copy_binary(img_resized)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
if img.shape[0] < img_height_model:
|
144 |
img = resize_image(img, img_height_model, img.shape[1])
|
145 |
|
146 |
if img.shape[1] < img_width_model:
|
147 |
img = resize_image(img, img.shape[0], img_width_model)
|
148 |
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
marginal_of_patch_percent = 0.1
|
153 |
margin = int(marginal_of_patch_percent * img_height_model)
|
154 |
width_mid = img_width_model - 2 * margin
|