File size: 32,053 Bytes
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
9b3a3bd
9c68964
 
 
 
9b3a3bd
 
 
 
9c68964
9b3a3bd
bde00a5
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde00a5
9c68964
bedcfff
 
 
 
 
 
 
 
 
 
 
 
 
9c68964
 
bedcfff
 
 
9b3a3bd
 
 
bedcfff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c68964
 
bde00a5
 
 
9c68964
9b3a3bd
 
 
9c68964
 
 
 
 
 
 
 
 
9b3a3bd
 
 
 
 
 
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb57621
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde00a5
9c68964
bde00a5
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054913b
 
 
 
 
 
 
 
 
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde00a5
 
 
9c68964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
import dotenv
import evalica
import io
import json
import os
import random
import threading

import gradio as gr
import pandas as pd

from huggingface_hub import upload_file, hf_hub_download, HfFolder, HfApi
from datetime import datetime
from gradio_leaderboard import Leaderboard
from openai import OpenAI

# Load environment variables
dotenv.load_dotenv()

# Initialize OpenAI Client
api_key = os.getenv("API_KEY")
base_url = "https://api.pandalla.ai/v1"
openai_client = OpenAI(api_key=api_key, base_url=base_url)

# Timeout in seconds for model responses
TIMEOUT = 60

# Hint string constant
SHOW_HINT_STRING = True  # Set to False to hide the hint string altogether
HINT_STRING = "Once signed in, your votes will be recorded securely."

# Load context length limits
with open("context_window.json", "r") as file:
    context_window = json.load(file)

# Get list of available models
available_models = list(context_window.keys())
if len(available_models) < 2:
    raise ValueError(
        "Insufficient models in context_window.json. At least two are required."
    )

# Initialize global variables
models_state = {}
conversation_state = {}


# Truncate prompt
def truncate_prompt(user_input, model_alias, models, conversation_state):
    """
    Truncate the conversation history and user input to fit within the model's context window.

    Args:
        user_input (str): The latest input from the user.
        model_alias (str): Alias for the model being used (e.g., "Model A", "Model B").
        models (dict): Dictionary mapping model aliases to their names.
        conversation_state (dict): State containing the conversation history for all models.

    Returns:
        str: Truncated conversation history and user input.
    """
    model_name = models[model_alias]
    context_length = context_window.get(model_name, 4096)

    # Get the full conversation history for the model
    history = conversation_state.get(model_name, [])
    full_conversation = [
        {"role": msg["role"], "content": msg["content"]} for msg in history
    ]
    full_conversation.append({"role": "user", "content": user_input})

    # Convert to JSON string for accurate length measurement
    json_conversation = json.dumps(full_conversation)

    if len(json_conversation) <= context_length:
        # If the full conversation fits, return it as-is
        return full_conversation

    # Truncate based on the current round
    if not history:  # First round, truncate FILO
        while len(json.dumps(full_conversation)) > context_length:
            full_conversation.pop(0)  # Remove from the start
    else:  # Subsequent rounds, truncate FIFO
        while len(json.dumps(full_conversation)) > context_length:
            full_conversation.pop(-1)  # Remove from the end

    return full_conversation


def chat_with_models(
    user_input, model_alias, models, conversation_state, timeout=TIMEOUT
):
    model_name = models[model_alias]
    truncated_input = truncate_prompt(
        user_input, model_alias, models, conversation_state
    )
    conversation_state.setdefault(model_name, []).append(
        {"role": "user", "content": user_input}
    )

    response_event = threading.Event()  # Event to signal response completion
    model_response = {"content": None, "error": None}

    def request_model_response():
        try:
            request_params = {
                "model": model_name,
                "messages": truncated_input,
                "temperature": 0,
            }
            response = openai_client.chat.completions.create(**request_params)
            model_response["content"] = response.choices[0].message.content
        except Exception as e:
            model_response["error"] = f"{model_name} model is not available. Error: {e}"
        finally:
            response_event.set()  # Signal that the response is completed

    # Start the model request in a separate thread
    response_thread = threading.Thread(target=request_model_response)
    response_thread.start()

    # Wait for the specified timeout
    response_event_occurred = response_event.wait(timeout)

    if not response_event_occurred:
        raise TimeoutError(
            f"The {model_alias} model did not respond within {timeout} seconds."
        )
    elif model_response["error"]:
        raise Exception(model_response["error"])
    else:
        formatted_response = f"```\n{model_response['content']}\n```"
        conversation_state[model_name].append(
            {"role": "assistant", "content": model_response["content"]}
        )
        return formatted_response


def save_content_to_hf(content, repo_name):
    """
    Save feedback content to Hugging Face repository organized by month and year.

    Args:
        content (dict): Feedback data to be saved.
        month_year (str): Year and month string in the format "YYYY_MM".
        repo_name (str): Hugging Face repository name.
    """
    # Ensure the user is authenticated with HF
    token = HfFolder.get_token()
    if token is None:
        raise ValueError("Please log in to Hugging Face using `huggingface-cli login`.")

    # Serialize the content to JSON and encode it as bytes
    json_content = json.dumps(content, indent=4).encode("utf-8")

    # Create a binary file-like object
    file_like_object = io.BytesIO(json_content)

    # Get the current year and month
    month_year = datetime.now().strftime("%Y_%m")
    day_hour_minute_second = datetime.now().strftime("%d_%H%M%S")

    # Define the path in the repository
    filename = f"{month_year}/{day_hour_minute_second}.json"

    # Upload to Hugging Face repository
    upload_file(
        path_or_fileobj=file_like_object,
        path_in_repo=filename,
        repo_id=repo_name,
        repo_type="dataset",
        use_auth_token=token,
    )


def load_content_from_hf(repo_name="SE-Arena/votes"):
    """
    Read feedback content from a Hugging Face repository based on the current month and year.

    Args:
        repo_name (str): Hugging Face repository name.

    Returns:
        list: Aggregated feedback data read from the repository.
    """

    # Get the current year and month
    year_month = datetime.now().strftime("%Y_%m")
    feedback_data = []

    try:
        api = HfApi()
        # List all files in the repository
        repo_files = api.list_repo_files(repo_id=repo_name, repo_type="dataset")

        # Filter files by current year and month
        feedback_files = [file for file in repo_files if year_month in file]

        if not feedback_files:
            raise FileNotFoundError(
                f"No feedback files found for {year_month} in {repo_name}."
            )

        # Download and aggregate data
        for file in feedback_files:
            local_path = hf_hub_download(
                repo_id=repo_name, filename=file, repo_type="dataset"
            )
            with open(local_path, "r") as f:
                data = json.load(f)
                if isinstance(data, list):
                    feedback_data.extend(data)
                elif isinstance(data, dict):
                    feedback_data.append(data)

        return feedback_data

    except:
        raise Exception("Error loading feedback data from Hugging Face repository.")


def get_leaderboard_data():
    # Load feedback data from the Hugging Face repository
    try:
        feedback_data = load_content_from_hf()
        feedback_df = pd.DataFrame(feedback_data)
    except:
        # If no feedback exists, return an empty DataFrame
        return pd.DataFrame(
            columns=[
                "Rank",
                "Model",
                "Elo Score",
                "Average Win Rate",
                "Bradley-Terry Coefficient",
                "Eigenvector Centrality Value",
                "PageRank Score",
                "Newman Modularity Score",
            ]
        )

    feedback_df["winner"] = feedback_df["winner"].map(
        {
            "left": evalica.Winner.X,
            "right": evalica.Winner.Y,
            "tie": evalica.Winner.Draw,
        }
    )

    # Calculate scores using various metrics
    avr_result = evalica.average_win_rate(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    bt_result = evalica.bradley_terry(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    newman_result = evalica.newman(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    eigen_result = evalica.eigen(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    elo_result = evalica.elo(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )
    pagerank_result = evalica.pagerank(
        feedback_df["left"], feedback_df["right"], feedback_df["winner"]
    )

    # Combine all results into a single DataFrame
    ranking_df = pd.DataFrame(
        {
            "Model": elo_result.scores.index,
            "Elo Score": elo_result.scores.values,
            "Average Win Rate": avr_result.scores.values * 100,
            "Bradley-Terry Coefficient": bt_result.scores.values,
            "Eigenvector Centrality Value": eigen_result.scores.values,
            "PageRank Score": pagerank_result.scores.values,
            "Newman Modularity Score": newman_result.scores.values,
        }
    )

    # Add a Rank column based on Elo scores
    ranking_df["Rank"] = (
        ranking_df["Elo Score"].rank(ascending=False, method="min").astype(int)
    )

    # Round all numeric columns to two decimal places
    ranking_df = ranking_df.round(
        {
            "Elo Score": 2,
            "Average Win Rate": 2,
            "Bradley-Terry Coefficient": 2,
            "Eigenvector Centrality Value": 2,
            "PageRank Score": 2,
            "Newman Modularity Score": 2,
        }
    )

    # Reorder columns to make 'Rank' the first column
    ranking_df = ranking_df.sort_values(by="Rank").reset_index(drop=True)

    ranking_df = ranking_df[
        [
            "Rank",
            "Model",
            "Elo Score",
            "Average Win Rate",
            "Bradley-Terry Coefficient",
            "Eigenvector Centrality Value",
            "PageRank Score",
            "Newman Modularity Score",
        ]
    ]

    return ranking_df


# Function to enable or disable submit buttons based on textbox content
def toggle_submit_button(text):
    if not text or text.strip() == "":
        return gr.update(interactive=False)  # Disable the button
    else:
        return gr.update(interactive=True)  # Enable the button


# Gradio Interface
with gr.Blocks() as app:
    user_authenticated = gr.State(False)
    models_state = gr.State({})
    conversation_state = gr.State({})

    with gr.Tab("🏆Leaderboard"):
        # Add title and description as a Markdown component
        leaderboard_intro = gr.Markdown(
            """
            # 🏆 Software Engineering Arena Leaderboard: Community-Driven Evaluation of Top SE Chatbots

            The Software Engineering (SE) Arena is an open-source platform designed to evaluate language models through human preference, fostering transparency and collaboration. Developed by researchers at [Software Analysis and Intelligence Lab (SAIL)](https://sail.cs.queensu.ca), the platform empowers the community to assess and compare the performance of leading foundation models in SE tasks. For technical details, check out our [paper](https://arxiv.org/abs/your-paper-link).
            """,
            elem_classes="leaderboard-intro",
        )
        # Initialize the leaderboard with the DataFrame containing the expected columns
        leaderboard_component = Leaderboard(
            value=get_leaderboard_data(),
            select_columns=[
                "Rank",
                "Model",
                "Elo Score",
                "Average Win Rate",
            ],
            search_columns=["Model"],
            filter_columns=[
                "Elo Score",
                "Average Win Rate",
                "Bradley-Terry Coefficient",
                "Eigenvector Centrality Value",
                "PageRank Score",
                "Newman Modularity Score",
            ],
        )
        # Add a citation block in Markdown
        citation_component = gr.Markdown(
            """
            Made with ❤️ for SE Arena. If this work is useful to you, please consider citing:
            ```
            [TODO]
            ```
            """
        )
    with gr.Tab("⚔️Arena"):
        # Add title and description as a Markdown component
        arena_intro = gr.Markdown(
            """
            # ⚔️ Software Engineering (SE) Arena: Explore and Test the Best SE Chatbots with Long-Context Interactions

            ## 📜How It Works
            - **Blind Comparison**: Submit any software engineering-related query to two anonymous chatbots, including top models like ChatGPT, Gemini, Claude, Llama, and others.
            - **Interactive Voting**: Engage in multi-turn dialogues and compare responses. Continue the conversation until you're confident in choosing the better model.
            - **Fair Play Rules**: Votes are valid only when chatbot identities remain anonymous—revealed identities disqualify the session.

            **Note:** Due to budget constraints, responses that take longer than one minute to generate will be discarded.
            """,
            elem_classes="arena-intro",
        )
        # Add Hugging Face Sign In button and message
        with gr.Row():
            # Define the markdown text with or without the hint string
            markdown_text = "## Please sign in using the button on the right to vote!"
            if SHOW_HINT_STRING:
                markdown_text += f"\n{HINT_STRING}"
            hint_markdown = gr.Markdown(markdown_text, elem_classes="markdown-text")
            login_button = gr.Button(
                "Sign in with Hugging Face", elem_id="oauth-button"
            )

        # Components with initial non-interactive state
        shared_input = gr.Textbox(
            label="Enter your prompt for both models",
            lines=2,
            interactive=False,  # Initially non-interactive
        )
        send_first = gr.Button(
            "Submit", visible=True, interactive=False
        )  # Initially non-interactive

        # Add event listener to shared_input to toggle send_first button
        shared_input.change(
            fn=toggle_submit_button, inputs=shared_input, outputs=send_first
        )

        user_prompt_md = gr.Markdown(value="", visible=False)

        with gr.Column():
            shared_input
            user_prompt_md

        with gr.Row():
            response_a_title = gr.Markdown(value="", visible=False)
            response_b_title = gr.Markdown(value="", visible=False)

        with gr.Row():
            response_a = gr.Markdown(label="Response from Model A")
            response_b = gr.Markdown(label="Response from Model B")

        # Add a popup component for timeout notification
        with gr.Row(visible=False) as timeout_popup:
            timeout_message = gr.Markdown(
                "### Timeout\n\nOne of the models did not respond within 1 minute. Please try again."
            )
            close_popup_btn = gr.Button("Okay")

        def close_timeout_popup():
            # Re-enable or disable the submit buttons based on the current textbox content
            shared_input_state = gr.update(interactive=True)
            send_first_state = toggle_submit_button(shared_input.value)

            model_a_input_state = gr.update(interactive=True)
            model_a_send_state = toggle_submit_button(model_a_input.value)

            model_b_input_state = gr.update(interactive=True)
            model_b_send_state = toggle_submit_button(model_b_input.value)

            return (
                gr.update(visible=False),  # Hide the timeout popup
                shared_input_state,  # Update shared_input
                send_first_state,  # Update send_first button
                model_a_input_state,  # Update model_a_input
                model_a_send_state,  # Update model_a_send button
                model_b_input_state,  # Update model_b_input
                model_b_send_state,  # Update model_b_send button
            )

        # Multi-round inputs, initially hidden
        with gr.Row(visible=False) as multi_round_inputs:
            model_a_input = gr.Textbox(label="Model A Input", lines=1)
            model_a_send = gr.Button(
                "Send to Model A", interactive=False
            )  # Initially disabled

            model_b_input = gr.Textbox(label="Model B Input", lines=1)
            model_b_send = gr.Button(
                "Send to Model B", interactive=False
            )  # Initially disabled

        # Add event listeners to model_a_input and model_b_input to toggle their submit buttons
        model_a_input.change(
            fn=toggle_submit_button, inputs=model_a_input, outputs=model_a_send
        )

        model_b_input.change(
            fn=toggle_submit_button, inputs=model_b_input, outputs=model_b_send
        )

        close_popup_btn.click(
            close_timeout_popup,
            inputs=[],
            outputs=[
                timeout_popup,
                shared_input,
                send_first,
                model_a_input,
                model_a_send,
                model_b_input,
                model_b_send,
            ],
        )

        # Function to update model titles and responses
        def update_model_titles_and_responses(
            user_input, models_state, conversation_state
        ):
            # Dynamically select two random models
            if len(available_models) < 2:
                raise ValueError(
                    "Insufficient models in context_window.json. At least two are required."
                )
            selected_models = random.sample(available_models, 2)
            models = {"Model A": selected_models[0], "Model B": selected_models[1]}

            # Update the states
            models_state.clear()
            models_state.update(models)
            conversation_state.clear()
            conversation_state.update({name: [] for name in models.values()})

            try:
                response_a = chat_with_models(
                    user_input, "Model A", models_state, conversation_state
                )
                response_b = chat_with_models(
                    user_input, "Model B", models_state, conversation_state
                )
            except TimeoutError as e:
                # Handle the timeout by resetting components, showing a popup, and disabling inputs
                return (
                    gr.update(
                        value="", interactive=False, visible=True
                    ),  # Disable shared_input
                    gr.update(value="", visible=False),  # Hide user_prompt_md
                    gr.update(value="", visible=False),  # Hide Model A title
                    gr.update(value="", visible=False),  # Hide Model B title
                    gr.update(value=""),  # Clear response from Model A
                    gr.update(value=""),  # Clear response from Model B
                    gr.update(visible=False),  # Hide multi-round inputs
                    gr.update(visible=False),  # Hide vote panel
                    gr.update(visible=True, interactive=False),  # Disable submit button
                    gr.update(interactive=False),  # Disable feedback selection
                    models_state,
                    conversation_state,
                    gr.update(visible=True),  # Show the timeout popup
                )
            except Exception as e:
                raise gr.Error(str(e))

            # Determine the initial state of the multi-round send buttons
            model_a_send_state = toggle_submit_button("")
            model_b_send_state = toggle_submit_button("")

            return (
                gr.update(visible=False),  # Hide shared_input
                gr.update(
                    value=f"**Your Prompt:**\n\n{user_input}", visible=True
                ),  # Show user_prompt_md
                gr.update(value=f"### Model A:", visible=True),
                gr.update(value=f"### Model B:", visible=True),
                gr.update(value=response_a),  # Show Model A response
                gr.update(value=response_b),  # Show Model B response
                gr.update(visible=True),  # Show multi-round inputs
                gr.update(visible=True),  # Show vote panel
                gr.update(visible=False),  # Hide submit button
                gr.update(interactive=True),  # Enable feedback selection
                models_state,
                conversation_state,
                gr.update(visible=False),  # Hide the timeout popup if it was visible
                model_a_send_state,  # Set model_a_send button state
                model_b_send_state,  # Set model_b_send button state
            )

        # Feedback panel, initially hidden
        with gr.Row(visible=False) as vote_panel:
            feedback = gr.Radio(
                choices=["Model A", "Model B", "Can't Decide"],
                label="Which model do you prefer?",
                value="Can't Decide",
                interactive=False,  # Initially not interactive
            )
            submit_feedback_btn = gr.Button("Submit Feedback", interactive=False)

        # Function to handle login
        def handle_login():
            """
            Handle user login using Hugging Face OAuth with automatic redirection.
            """
            try:
                # Use Hugging Face OAuth to initiate login
                HfApi()

                # Wait for user authentication and get the token
                print(
                    "Redirected to Hugging Face for authentication. Please complete the login."
                )
                token = HfFolder.get_token()
                if not token:
                    raise Exception("Authentication token not found.")

                # If token is successfully retrieved, update the interface state
                return (
                    gr.update(visible=False),  # Hide the login button
                    gr.update(interactive=True),  # Enable shared_input
                    gr.update(
                        interactive=False
                    ),  # Keep send_first button disabled initially
                    gr.update(interactive=True),  # Enable feedback radio buttons
                    gr.update(interactive=True),  # Enable submit_feedback_btn
                    gr.update(visible=False),  # Hide the hint string
                )
            except Exception as e:
                # Handle login failure
                print(f"Login failed: {e}")
                return (
                    gr.update(visible=True),  # Keep the login button visible
                    gr.update(interactive=False),  # Keep shared_input disabled
                    gr.update(interactive=False),  # Keep send_first disabled
                    gr.update(
                        interactive=False
                    ),  # Keep feedback radio buttons disabled
                    gr.update(interactive=False),  # Keep submit_feedback_btn disabled
                    gr.update(visible=True),  # Show the hint string
                )

        # Handle the login button click
        login_button.click(
            handle_login,
            inputs=[],
            outputs=[
                login_button,  # Hide the login button after successful login
                shared_input,  # Enable shared_input
                send_first,  # Enable send_first button
                feedback,  # Enable feedback radio buttons
                submit_feedback_btn,  # Enable submit_feedback_btn
                hint_markdown,  # Hide the hint string
            ],
        )

        # First round handling
        send_first.click(
            update_model_titles_and_responses,
            inputs=[shared_input, models_state, conversation_state],
            outputs=[
                shared_input,  # shared_input
                user_prompt_md,  # user_prompt_md
                response_a_title,  # response_a_title
                response_b_title,  # response_b_title
                response_a,  # response_a
                response_b,  # response_b
                multi_round_inputs,  # multi_round_inputs
                vote_panel,  # vote_panel
                send_first,  # send_first
                feedback,  # feedback
                models_state,  # models_state
                conversation_state,  # conversation_state
                timeout_popup,  # timeout_popup
                model_a_send,  # model_a_send state
                model_b_send,  # model_b_send state
            ],
        )

        # Handle subsequent rounds
        def handle_model_a_send(user_input, models_state, conversation_state):
            try:
                response = chat_with_models(
                    user_input, "Model A", models_state, conversation_state
                )
                # Clear the input box and disable the send button
                return (
                    response,
                    conversation_state,
                    gr.update(visible=False),
                    gr.update(
                        value="", interactive=True
                    ),  # Clear and enable model_a_input
                    gr.update(interactive=False),  # Disable model_a_send button
                )
            except TimeoutError as e:
                # Disable inputs when timeout occurs
                return (
                    gr.update(value=""),  # Clear response
                    conversation_state,
                    gr.update(visible=True),  # Show the timeout popup
                    gr.update(interactive=False),  # Disable model_a_input
                    gr.update(interactive=False),  # Disable model_a_send
                )
            except Exception as e:
                raise gr.Error(str(e))

        def handle_model_b_send(user_input, models_state, conversation_state):
            try:
                response = chat_with_models(
                    user_input, "Model B", models_state, conversation_state
                )
                # Clear the input box and disable the send button
                return (
                    response,
                    conversation_state,
                    gr.update(visible=False),
                    gr.update(
                        value="", interactive=True
                    ),  # Clear and enable model_b_input
                    gr.update(interactive=False),  # Disable model_b_send button
                )
            except TimeoutError as e:
                # Disable inputs when timeout occurs
                return (
                    gr.update(value=""),  # Clear response
                    conversation_state,
                    gr.update(visible=True),  # Show the timeout popup
                    gr.update(interactive=False),  # Disable model_b_input
                    gr.update(interactive=False),  # Disable model_b_send
                )
            except Exception as e:
                raise gr.Error(str(e))

        model_a_send.click(
            handle_model_a_send,
            inputs=[model_a_input, models_state, conversation_state],
            outputs=[
                response_a,
                conversation_state,
                timeout_popup,
                model_a_input,
                model_a_send,
            ],
        )
        model_b_send.click(
            handle_model_b_send,
            inputs=[model_b_input, models_state, conversation_state],
            outputs=[
                response_b,
                conversation_state,
                timeout_popup,
                model_b_input,
                model_b_send,
            ],
        )

        def submit_feedback(vote, models_state, conversation_state):
            # Get current timestamp
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

            # Map vote to actual model names
            match vote:
                case "Model A":
                    winner_model = "left"
                case "Model B":
                    winner_model = "right"
                case "Can't Decide":
                    winner_model = "tie"

            # Create feedback entry
            feedback_entry = {
                "left": models_state["Model A"],
                "right": models_state["Model B"],
                "winner": winner_model,
                "timestamp": timestamp,
            }

            # Save feedback back to the Hugging Face dataset
            save_content_to_hf(feedback_entry, "SE-Arena/votes")

            # Save conversations back to the Hugging Face dataset
            save_content_to_hf(conversation_state, "SE-Arena/conversations")

            # Clear state
            models_state.clear()
            conversation_state.clear()

            # Recalculate leaderboard
            leaderboard_data = get_leaderboard_data()

            # Adjust output count to match the interface definition
            return (
                gr.update(
                    value="", interactive=True, visible=True
                ),  # Clear and show shared_input
                gr.update(value="", visible=False),  # Hide user_prompt_md
                gr.update(value="", visible=False),  # Hide response_a_title
                gr.update(value="", visible=False),  # Hide response_b_title
                gr.update(value=""),  # Clear Model A response
                gr.update(value=""),  # Clear Model B response
                gr.update(visible=False),  # Hide multi-round inputs
                gr.update(visible=False),  # Hide vote panel
                gr.update(
                    value="Submit", interactive=True, visible=True
                ),  # Update send_first button
                gr.update(
                    value="Can't Decide", interactive=True
                ),  # Reset feedback selection
                leaderboard_data,  # Updated leaderboard data
            )

        # Update the click event for the submit feedback button
        submit_feedback_btn.click(
            submit_feedback,
            inputs=[feedback, models_state, conversation_state],
            outputs=[
                shared_input,  # Reset shared_input
                user_prompt_md,  # Hide user_prompt_md
                response_a_title,  # Hide Model A title
                response_b_title,  # Hide Model B title
                response_a,  # Clear Model A response
                response_b,  # Clear Model B response
                multi_round_inputs,  # Hide multi-round input section
                vote_panel,  # Hide vote panel
                send_first,  # Reset and update send_first button
                feedback,  # Reset feedback selection
                leaderboard_component,  # Update leaderboard data dynamically
            ],
        )

        # Add Terms of Service at the bottom
        terms_of_service = gr.Markdown(
            """
            ## Terms of Service

            Users are required to agree to the following terms before using the service:
            
            - The service is a **research preview**. It only provides limited safety measures and may generate offensive content.
            - It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
            - Please **do not upload any private information**.
            - The service collects user dialogue data, including both text and images, and reserves the right to distribute it under a **Creative Commons Attribution (CC-BY)** or a similar license.
            """
        )

    app.launch()