zhiminy commited on
Commit
1024d82
·
1 Parent(s): 5c3511e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -405,7 +405,7 @@ def get_leaderboard_data(feedback_entry=None):
405
  )
406
 
407
  # Calculate consistency score as a pandas Series aligned with other metrics
408
- is_result = pd.Series(0.0, index=elo_result.scores.index) # Initialize with zeros using same index
409
 
410
  # Loop through models and update values
411
  for model in is_result.index:
@@ -420,14 +420,14 @@ def get_leaderboard_data(feedback_entry=None):
420
  # Count non-draw outcomes (wins or losses)
421
  draws = self_matches[self_matches["winner"] == evalica.Winner.Draw].shape[0]
422
  # Store as percentage directly
423
- is_result[model] = draws / totals
424
 
425
  # Combine all results into a single DataFrame
426
  leaderboard_data = pd.DataFrame(
427
  {
428
  "Model": elo_result.scores.index,
429
  "Elo Score": elo_result.scores.values,
430
- "Consistency Score": is_result.values * 100,
431
  "Average Win Rate": avr_result.scores.values * 100,
432
  "Bradley-Terry Coefficient": bt_result.scores.values,
433
  "Eigenvector Centrality Value": eigen_result.scores.values,
@@ -440,7 +440,6 @@ def get_leaderboard_data(feedback_entry=None):
440
  leaderboard_data = leaderboard_data.round(
441
  {
442
  "Elo Score": 2,
443
- "Consistency Score": 2,
444
  "Average Win Rate": 2,
445
  "Bradley-Terry Coefficient": 2,
446
  "Eigenvector Centrality Value": 2,
 
405
  )
406
 
407
  # Calculate consistency score as a pandas Series aligned with other metrics
408
+ is_result = pd.Series("N/A", index=elo_result.scores.index) # Initialize with zeros using same index
409
 
410
  # Loop through models and update values
411
  for model in is_result.index:
 
420
  # Count non-draw outcomes (wins or losses)
421
  draws = self_matches[self_matches["winner"] == evalica.Winner.Draw].shape[0]
422
  # Store as percentage directly
423
+ is_result[model] = round(draws / totals * 100, 2)
424
 
425
  # Combine all results into a single DataFrame
426
  leaderboard_data = pd.DataFrame(
427
  {
428
  "Model": elo_result.scores.index,
429
  "Elo Score": elo_result.scores.values,
430
+ "Consistency Score": is_result.values,
431
  "Average Win Rate": avr_result.scores.values * 100,
432
  "Bradley-Terry Coefficient": bt_result.scores.values,
433
  "Eigenvector Centrality Value": eigen_result.scores.values,
 
440
  leaderboard_data = leaderboard_data.round(
441
  {
442
  "Elo Score": 2,
 
443
  "Average Win Rate": 2,
444
  "Bradley-Terry Coefficient": 2,
445
  "Eigenvector Centrality Value": 2,