File size: 3,520 Bytes
3595c9a 43c0ab3 ccb1a5d 43c0ab3 ccb1a5d f85fb0e a195341 f85fb0e 74f2d8b 87071af a195341 4011ea8 a195341 4011ea8 a195341 2571dcc a195341 2571dcc a195341 4011ea8 a195341 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
title: README
emoji: π
colorFrom: gray
colorTo: gray
sdk: static
pinned: false
---
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6567e9af88bfbc261a34673d/riHfcszflP6BzNls2Phrf.png"
width=400px
style="border-radius: 20px;"
/>
</div>
<div align="center">
<h1> Want to contribute? </h1>
</div>
- π₯ For naming models, spaces, datasets, and metrics, employ [kebab-case](https://en.wiktionary.org/wiki/kebab_case). Use lowercase letters, except for acronyms, which may be capitalized.
- π Please mind about making the models, spaces and datasets public or private. Metrics can (and have to) be public.
- π€ Do not expose passwords or tokens, use [secrets](https://huggingface.co/docs/hub/spaces-overview#managing-secrets).
<div align="center">
<h1> Looking for metrics? </h1>
</div>
- https://huggingface.co/spaces/SEA-AI/det-metrics
- Object detection metrics based on [`pycocotools`](https://github.com/cocodataset/cocoapi) and [torchmetrics' Mean Avergae Precision](https://lightning.ai/docs/torchmetrics/stable/detection/mean_average_precision.html).
- https://huggingface.co/spaces/SEA-AI/box-metrics
- Bounding box statistics, including IOU, BEP (bottom edge proximity), and others.
- https://huggingface.co/spaces/SEA-AI/horizon-metrics
- Comparing horizons in an image w.r.t their midpoint and slope errors
- https://huggingface.co/spaces/SEA-AI/mot-metrics
- Multi-object-tracking metrics using [`py-motmetrics`](https://github.com/cheind/py-motmetrics)
- https://huggingface.co/spaces/SEA-AI/panoptic-quality
- Evaluating panoptic models
<details>
<summary>Proposed Metric Output Structure</summary>
Your metric should have the following structure:
- `_compute(references, predictions)`
- Calls a metric engine, defined for example in the `seametrics` package, or other
- `compute_from_payload(paylaod)`
- Call the `module.compute` method internally after converting payload -> references, predictions
- All the metric's parameters, such as `iou_threshold`, `area_ranges`, etc.. should be moved to the `__init__` method.
- Output should look like this:
```json
{
"ahoy_IR_b2_engine_3_6_0_49_gd81d3b63_oversea": {
"overall": {
"all": {
"f1": 0.15967351103175614,
"fn": 2923.0,
"fp": 3666.0,
"num_gt_ids": 10,
"precision": 0.14585274930102515,
"recall": 0.1763877148492533,
"recognition_0.3": 0.1,
"recognition_0.5": 0.1,
"recognition_0.8": 0.1,
"recognized_0.3": 1,
"recognized_0.5": 1,
"recognized_0.8": 1,
"tp": 626.0
}
},
"per_sequence": {
"Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_12_51_49": {
"all": {
"f1": 0.15967351103175614,
"fn": 2923.0,
"fp": 3666.0,
"num_gt_ids": 10,
"precision": 0.14585274930102515,
"recall": 0.1763877148492533,
"recognition_0.3": 0.1,
"recognition_0.5": 0.1,
"recognition_0.8": 0.1,
"recognized_0.3": 1,
"recognized_0.5": 1,
"recognized_0.8": 1,
"tp": 626.0
}
}
}
}
}
```
</details> |