from langchain.chains import RetrievalQA | |
from langchain_community.document_loaders import UnstructuredHTMLLoader | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_openai import ChatOpenAI | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
def get_retrieval_qa(filename): | |
# load documents | |
loader = UnstructuredHTMLLoader(filename) | |
documents = loader.load() | |
# split the documents into chunks | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | |
texts = text_splitter.split_documents(documents) | |
# select which embeddings we want to use | |
embeddings = OpenAIEmbeddings() | |
# create the vectorestore to use as the index | |
db = Chroma.from_documents(texts, embeddings) | |
# expose this index in a retriever interface | |
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 2}) | |
# create a chain to answer questions | |
return RetrievalQA.from_chain_type( | |
llm=ChatOpenAI(), | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True, | |
verbose=True, | |
) | |