File size: 9,284 Bytes
930daa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import evaluate
import datasets
import motmetrics as mm
import numpy as np
from seametrics.payload import Payload
import torch
from utils import bbox_iou, bbox_bep
import datasets

# _DESCRIPTION = """\
# The box-metrics package provides a set of metrics to evaluate 
# the performance of object detection algorithms in ther of sizing and positioning
# of the bounding boxes."""

# _KWARGS_DESCRIPTION = """
# Calculates how good are predictions given some references, using certain scores
# Args:
#     predictions: list of predictions to score. Each predictions
#         should be a string with tokens separated by spaces.
#     references: list of reference for each prediction. Each
#         reference should be a string with tokens separated by spaces.
#     max_iou (`float`, *optional*):
#         If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
#         Default is 0.5.
# """

# _CITATION = """\
# @InProceedings{huggingface:module,
# title = {A great new module},
# authors={huggingface, Inc.},
# year={2020}
# }\
# @article{milan2016mot16,
#   title={Are object detection assessment criteria ready for maritime computer vision?},
#   author={Dilip K. Prasad1, Deepu Rajan and Chai Quek},
#   journal={arXiv:1809.04659v1},
#   year={2018}
# }
# """

_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
  title={MOT16: A benchmark for multi-object tracking},
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
  journal={arXiv preprint arXiv:1603.00831},
  year={2016}
}
"""

_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT) 
algorithms by computing various metrics based on predicted and ground truth bounding 
boxes. It serves as a crucial tool in assessing the performance of MOT systems, 
aiding in the iterative improvement of tracking algorithms."""


_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
    max_iou (`float`, *optional*):
        If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
        Default is 0.5.
"""

# @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class BoxMetrics(evaluate.Metric):

    def __init__(self, max_iou: float = 0.01, **kwargs):
        # super().__init__(**kwargs)
        self.max_iou = max_iou
        self.boxes = {}
        self.gt_field = "ground_truth_det"


    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                "predictions": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            ),
                "references": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            )
            }),
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )


    def add_payload(self, payload: Payload):
        """Convert a payload to the format of the tracking metrics library"""
        self.add(payload)

    def add(self, payload: Payload):
        self.gt_field = payload.gt_field_name
        for sequence in payload.sequences:
            self.boxes[sequence] = {}
            target = payload.sequences[sequence][self.gt_field]
            resolution = payload.sequences[sequence]["resolution"]
            target_tm = self.payload_labels_to_tm(target, resolution)
            self.boxes[sequence][self.gt_field] = target_tm

            for model in payload.models:
                preds = payload.sequences[sequence][model]
                preds_tm = self.payload_preds_to_rm(preds, resolution)
                self.boxes[sequence][model] = preds_tm

    def compute(self):
        """Compute the metric value"""

        output = {}

        for sequence in self.boxes:
            ious = []
            beps = []
            bottom_x = []
            bottom_y = []
            widths = []
            heights = []
            output[sequence] = {}

            target = self.boxes[sequence][self.gt_field]
            for model in self.boxes[sequence]:
                preds = self.boxes[sequence][model]

                for i in range(len(preds)):

                    target_tm_bbs = target[i][:, 1:]
                    pred_tm_bbs = preds[i][:, :4]

                    if target_tm_bbs.shape[0] == 0 or pred_tm_bbs.shape[0] == 0:
                        continue

                    for t_box in target_tm_bbs:
                        iou = bbox_iou(t_box.unsqueeze(0), pred_tm_bbs, xywh=False)
                        bep = bbox_bep(t_box.unsqueeze(0), pred_tm_bbs, xywh=False)
                        matches = pred_tm_bbs[iou.squeeze(1) > self.max_iou]

                        bep = bep[iou>self.max_iou]
                        iou = iou[iou>self.max_iou]

                        if torch.any(iou <= 0):
                            raise ValueError("IoU should be greater than 0, pls contact code maintainer")
                        if torch.any(bep <= 0):
                            raise ValueError("BEP should be greater than 0, pls contact code maintainer")
                        
                        ious.extend(iou.tolist())
                        beps.extend(bep.tolist())

                        for match in matches:
                            t_xc = (match[0].item()+match[2].item())/2
                            p_xc = (t_box[0].item()+t_box[2].item())/2
                            t_w = t_box[2].item()-t_box[0].item()
                            p_w = match[2].item()-match[0].item()
                            t_h = t_box[3].item()-t_box[1].item()
                            p_h = match[3].item()-match[1].item()


                            bottom_x.append(abs(t_xc-p_xc))
                            widths.append(abs(t_w-p_w))
                            bottom_y.append(abs(t_box[1].item()-match[1].item()))
                            heights.append(abs(t_h-p_h))

            output[sequence][model] = {
                                    "iou_mean": np.mean(ious),
                                    "bep_mean": np.mean(beps),
                                    "bottom_x_mean": np.mean(bottom_x),
                                    "bottom_y_mean": np.mean(bottom_y),
                                    "width_mean": np.mean(widths),
                                    "height_mean": np.mean(heights),
                                    "bottom_x_std": np.std(bottom_x),
                                    "bottom_y_std": np.std(bottom_y),
                                    "width_std": np.std(widths),
                                    "height_std": np.std(heights)
                                    }
        return output
    
    @staticmethod
    def payload_labels_to_tm(labels, resolution):
        """Convert the labels of a payload sequence to the format of torch metrics"""
        target_tm = []
        for frame in labels:
            target_tm_frame = []
            for det in frame:
                label = 0
                box = det["bounding_box"]
                x1, y1, x2, y2 = box[0], box[1], box[0]+box[2], box[1]+box[3]
                x1, y1, x2, y2 = x1*resolution.width, y1*resolution.height, x2*resolution.width, y2*resolution.height
                target_tm_frame.append([label, x1, y1, x2, y2])
            target_tm.append(torch.tensor(target_tm_frame) if len(target_tm_frame) > 0 else torch.empty((0, 5)))

        return target_tm
    
    @staticmethod
    def payload_preds_to_rm(preds, resolution):
        """Convert the predictions of a payload sequence to the format of torch metrics"""
        preds_tm = []
        for frame in preds:
            pred_tm_frame = []
            for det in frame:
                label = 0
                box = det["bounding_box"]
                x1, y1, x2, y2 = box[0], box[1], box[0]+box[2], box[1]+box[3]
                x1, y1, x2, y2 = x1*resolution.width, y1*resolution.height, x2*resolution.width, y2*resolution.height
                conf = 1
                pred_tm_frame.append([x1, y1, x2, y2, conf, label])
            preds_tm.append(torch.tensor(pred_tm_frame) if len(pred_tm_frame) > 0 else torch.empty((0, 6)))

        return preds_tm