File size: 3,550 Bytes
e5b7fab
a851b62
137b0e5
23749ff
 
137b0e5
8f2a3ef
e5b7fab
23749ff
e5b7fab
 
23749ff
e5b7fab
 
23749ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7763c3
23749ff
 
 
 
 
c7763c3
 
 
 
 
 
 
 
 
 
23749ff
 
a13dc9f
c7763c3
23749ff
 
 
 
 
 
 
c7763c3
 
 
 
 
23749ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13dc9f
23749ff
a13dc9f
 
 
23749ff
 
 
a13dc9f
23749ff
 
 
 
 
 
 
a13dc9f
 
 
 
 
23749ff
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
title: box-metrics
tags:
- evaluate
- metric
description: >-
  built upon yolov5 iou functions. Outputs metrics regarding box fit
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
emoji: 🕵️
---

# SEA-AI/det-metrics

This hugging face metric uses `seametrics.detection.PrecisionRecallF1Support` under the hood to compute coco-like metrics for object detection tasks. It is a [modified cocoeval.py](https://github.com/SEA-AI/seametrics/blob/develop/seametrics/detection/cocoeval.py) wrapped inside [torchmetrics' mAP metric](https://lightning.ai/docs/torchmetrics/stable/detection/mean_average_precision.html) but with numpy arrays instead of torch tensors.

## Getting Started

To get started with det-metrics, make sure you have the necessary dependencies installed. This metric relies on the `evaluate` and `seametrics` libraries for metric calculation and integration with FiftyOne datasets.

### Installation

First, ensure you have Python 3.8 or later installed. Then, install det-metrics using pip:

```sh
pip install evaluate git+https://github.com/SEA-AI/seametrics@develop
```

### Basic Usage

Here's how to quickly evaluate your object detection models using SEA-AI/box-metrics:

```python
import evaluate

# Define your predictions and references (dict values can also by numpy arrays)
predictions = {
              "model1": [torch.tensor[n,6], torch.tensor[n,6]],
              "model2": [torch.tensor[n,6], torch.tensor[n,6]]
              }

#predictions box format: x1, y1, x2, y2, conf, label  (torch metrics format)

references = [torch.tensor[n,5], torch.tensor[n,5]]

#refernces box format: label, x1, y1, x2, y2 (torch metrics format)

# Load SEA-AI/det-metrics and evaluate
module = evaluate.load("SEA-AI/box-metrics")
module.add_batch(prediction=predictions, reference=references, sequence_name="sequence")
results = module.compute()

print(results)
```

This will output the evaluation metrics for your detection model.
```
{'sequence': {'model1':
  {'iou': '0.6',
  'bep': 0.5,
  ...
  }}}
```

## FiftyOne Integration

Integrate SEA-AI/det-metrics with FiftyOne datasets for enhanced analysis and visualization:

```python
import evaluate
import logging
from seametrics.payload.processor import PayloadProcessor

logging.basicConfig(level=logging.WARNING)

# Configure your dataset and model details
processor = PayloadProcessor(
    dataset_name="SENTRY_VIDEOS_DATASET_QA",
    gt_field="ground_truth_det",
    models=["ahoy-IR-b2-whales__XAVIER-AGX-JP46_CNN"],
    sequence_list=["Sentry_2022_11_PROACT_CELADON_7.5M_MOB_2022_11_25_12_12_39"],
    data_type="thermal",
)

# Evaluate using SEA-AI/det-metrics
module = evaluate.load("SEA-AI/box-metrics")
module.add_payload(processor.payload)
results = module.compute()

print(results)
```

```console
{'Sentry_2022_11_PROACT_CELADON_7.5M_MOB_2022_11_25_12_12_39': {'ahoy-IR-b2-whales__XAVIER-AGX-JP46_CNN':
  {'iou': '0.6',
  'bep': 0.5,
  ...
  }}}
```

## Further References

- **seametrics Library**: Explore the [seametrics GitHub repository](https://github.com/SEA-AI/seametrics/tree/main) for more details on the underlying library.
- **Understanding Metrics**: For a deeper understanding of precision, recall, and other metrics, read [this comprehensive guide](https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/).

## Contribution

Your contributions are welcome! If you'd like to improve SEA-AI/det-metrics or add new features, please feel free to fork the repository, make your changes, and submit a pull request.