Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import math | |
def bbox_bep(box1, box2, xywh=True, eps=1e-7, bep1 = True): | |
""" | |
Calculates bottom edge proximity between two boxes | |
Input shapes are box1(1,4) to box2(n,4) | |
Implementation of bep2 from | |
Are object detection assessment criteria ready for maritime computer vision? | |
""" | |
# Get the coordinates of bounding boxes | |
if xywh: # transform from xywh to xyxy | |
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) | |
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 | |
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ | |
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ | |
else: # x1, y1, x2, y2 = box1 | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) | |
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) | |
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) | |
# Bottom edge distance (absolute value) | |
# xb = torch.abs(b2_x2 - b1_x1) | |
xb = torch.min(b2_x2-b1_x1, b1_x2-b2_x1) | |
xa = w2 - xb | |
xc = w1 - xb | |
ybe = torch.abs(b2_y2 - b1_y2) | |
X2 = xb/(xb+xa) | |
Y2 = 1-ybe/h2 | |
X1 = xb/(xb+xa+xc+eps) | |
Y1 = 1-ybe/(torch.max(h2,h1)+eps) | |
bep = X1*Y1 if bep1 else X2*Y2 | |
return bep | |
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): | |
""" | |
Calculates IoU, GIoU, DIoU, or CIoU between two boxes, supporting xywh/xyxy formats. | |
Input shapes are box1(1,4) to box2(n,4). | |
""" | |
# Get the coordinates of bounding boxes | |
if xywh: # transform from xywh to xyxy | |
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) | |
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 | |
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ | |
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ | |
else: # x1, y1, x2, y2 = box1 | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) | |
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) | |
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) | |
# Intersection area | |
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * ( | |
b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1) | |
).clamp(0) | |
# Union Area | |
union = w1 * h1 + w2 * h2 - inter + eps | |
# IoU | |
iou = inter / union | |
if CIoU or DIoU or GIoU: | |
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width | |
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height | |
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 | |
c2 = cw**2 + ch**2 + eps # convex diagonal squared | |
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 | |
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 | |
v = (4 / math.pi**2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) | |
with torch.no_grad(): | |
alpha = v / (v - iou + (1 + eps)) | |
return iou - (rho2 / c2 + v * alpha) # CIoU | |
return iou - rho2 / c2 # DIoU | |
c_area = cw * ch + eps # convex area | |
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf | |
return iou # IoU | |
class BoxMetrics: | |
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix | |
def __init__(self): | |
self.preds_tm = [] | |
self.target_tm = [] | |
self.bottom_x = [] | |
self.bottom_y = [] | |
self.widths = [] | |
self.heights = [] | |
self.ious = [] | |
self.beps = [] | |
def add_batch(self, preds, target): | |
""" | |
Return intersection-over-union (Jaccard index) of boxes. | |
Both sets of boxes are expected to be in (x1, y1, x2, y2) format. | |
Arguments: | |
detections torch(Array[N, 6]), x1, y1, x2, y2, conf, class | |
labels torch(Array[M, 5]), class, x1, y1, x2, y2 | |
Returns: | |
None, updates confusion matrix accordingly | |
""" | |
self.preds_tm.extend(preds) | |
self.target_tm.extend(target) | |
def compute(self): | |
""" | |
Computes bbox iou, bep and location/size statistics | |
""" | |
for i in range(len(self.target_tm)): | |
target_batch_boxes = self.target_tm[i][:, 1:] | |
pred_batch_boxes = self.preds_tm[i][:, :4] | |
if pred_batch_boxes.shape[0] == 0: | |
continue | |
if target_batch_boxes.shape[0] == 0: | |
continue | |
for t_box in target_batch_boxes: | |
iou = bbox_iou(t_box.unsqueeze(0), pred_batch_boxes, xywh=False) | |
bep = bbox_bep(t_box.unsqueeze(0), pred_batch_boxes, xywh=False) | |
matches = pred_batch_boxes[iou.squeeze(1) > 0.1] | |
bep = bep[iou > 0] | |
iou = iou[iou > 0] | |
# if any iou value is 0 or less, raise error | |
if torch.any(iou <= 0): | |
raise ValueError("IoU values must be greater than 0.") | |
#same for bep | |
if torch.any(bep <= 0): | |
print(t_box.unsqueeze(0)) | |
print(pred_batch_boxes) | |
print(bep) | |
print(iou) | |
raise ValueError("BEP values must be greater than 0.") | |
self.ious.extend(iou.tolist()) | |
self.beps.extend(bep.tolist()) | |
for match in matches: | |
t_xc = (match[0].item()+match[2].item())/2 | |
p_xc = (t_box[0].item()+t_box[2].item())/2 | |
t_w = t_box[2].item()-t_box[0].item() | |
p_w = match[2].item()-match[0].item() | |
t_h = t_box[3].item()-t_box[1].item() | |
p_h = match[3].item()-match[1].item() | |
self.bottom_x.append(p_xc - t_xc) | |
self.bottom_y.append(match[3].item()-t_box[3].item()) | |
self.widths.append(p_w-t_w) | |
self.heights.append(p_h-t_h) | |
return {"iou_mean": np.mean(self.ious), | |
"bep_mean": np.mean(self.beps), | |
"bottom_x_std": np.std(self.bottom_x), | |
"bottom_y_std": np.std(self.bottom_y), | |
"widths_std": np.std(self.widths), | |
"heights_std": np.std(self.heights), | |
"bottom_x_mean": np.mean(self.bottom_x), | |
"bottom_y_mean": np.mean(self.bottom_y), | |
"widths_mean": np.mean(self.widths), | |
"heights_mean": np.mean(self.heights)} | |