Spaces:
Sleeping
Sleeping
[email protected]
commited on
Commit
·
48a1df0
1
Parent(s):
137b0e5
add examples
Browse files- box_metrics.py +9 -5
- unit_test.py → examples/batch.py +0 -0
- test.py → examples/payload.py +2 -2
- utils.py +1 -1
box_metrics.py
CHANGED
@@ -169,8 +169,6 @@ class box_metrics(evaluate.Metric):
|
|
169 |
if bep < 0:
|
170 |
raise ValueError("BEP should be greater than 0, pls contact code maintainer")
|
171 |
|
172 |
-
ious = np.append(ious, iou)
|
173 |
-
beps = np.append(beps, bep)
|
174 |
|
175 |
t_xc = (p_box[0].item()+p_box[2].item())/2
|
176 |
p_xc = (t_box[0].item()+t_box[2].item())/2
|
@@ -181,6 +179,12 @@ class box_metrics(evaluate.Metric):
|
|
181 |
t_h = t_box[3].item()-t_box[1].item()
|
182 |
p_h = p_box[3].item()-p_box[1].item()
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
e_widths = np.append(e_widths, p_w-t_w)
|
185 |
e_heights = np.append(e_heights, p_h-t_h)
|
186 |
e_bottom_x = np.append(e_bottom_x, p_xc-t_xc)
|
@@ -192,8 +196,8 @@ class box_metrics(evaluate.Metric):
|
|
192 |
e_n_bottom_y = np.append(e_n_bottom_y, (p_yc-t_yc)/t_h)
|
193 |
|
194 |
output[sequence][model] = {
|
195 |
-
"
|
196 |
-
"
|
197 |
"e_bottom_x_mean": np.mean(e_bottom_x),
|
198 |
"e_bottom_y_mean": np.mean(e_bottom_y),
|
199 |
"e_width_mean": np.mean(e_widths),
|
@@ -214,7 +218,7 @@ class box_metrics(evaluate.Metric):
|
|
214 |
}
|
215 |
|
216 |
return output
|
217 |
-
|
218 |
@staticmethod
|
219 |
def summarize(result):
|
220 |
"""Summarize the results by model insteaf by sequence: model"""
|
|
|
169 |
if bep < 0:
|
170 |
raise ValueError("BEP should be greater than 0, pls contact code maintainer")
|
171 |
|
|
|
|
|
172 |
|
173 |
t_xc = (p_box[0].item()+p_box[2].item())/2
|
174 |
p_xc = (t_box[0].item()+t_box[2].item())/2
|
|
|
179 |
t_h = t_box[3].item()-t_box[1].item()
|
180 |
p_h = p_box[3].item()-p_box[1].item()
|
181 |
|
182 |
+
if t_h < 10:
|
183 |
+
continue
|
184 |
+
|
185 |
+
ious = np.append(ious, iou)
|
186 |
+
beps = np.append(beps, bep)
|
187 |
+
|
188 |
e_widths = np.append(e_widths, p_w-t_w)
|
189 |
e_heights = np.append(e_heights, p_h-t_h)
|
190 |
e_bottom_x = np.append(e_bottom_x, p_xc-t_xc)
|
|
|
196 |
e_n_bottom_y = np.append(e_n_bottom_y, (p_yc-t_yc)/t_h)
|
197 |
|
198 |
output[sequence][model] = {
|
199 |
+
"iou": np.mean(ious),
|
200 |
+
"bep": np.mean(beps),
|
201 |
"e_bottom_x_mean": np.mean(e_bottom_x),
|
202 |
"e_bottom_y_mean": np.mean(e_bottom_y),
|
203 |
"e_width_mean": np.mean(e_widths),
|
|
|
218 |
}
|
219 |
|
220 |
return output
|
221 |
+
|
222 |
@staticmethod
|
223 |
def summarize(result):
|
224 |
"""Summarize the results by model insteaf by sequence: model"""
|
unit_test.py → examples/batch.py
RENAMED
File without changes
|
test.py → examples/payload.py
RENAMED
@@ -16,9 +16,9 @@ dataset_view = fo.load_dataset(dataset_name).match_tags(tags) if tags else fo.lo
|
|
16 |
sequences = dataset_view.distinct("sequence")
|
17 |
|
18 |
# bbox_metric = BoxMetrics(max_iou=0.01)
|
19 |
-
bbox_metric = evaluate.load("box_metrics
|
20 |
|
21 |
-
for sequence in tqdm(sequences
|
22 |
try:
|
23 |
payload = fo_to_payload(dataset = dataset_name,
|
24 |
gt_field = det_gt_field,
|
|
|
16 |
sequences = dataset_view.distinct("sequence")
|
17 |
|
18 |
# bbox_metric = BoxMetrics(max_iou=0.01)
|
19 |
+
bbox_metric = evaluate.load("SEA-AI/box_metrics")
|
20 |
|
21 |
+
for sequence in tqdm(sequences):
|
22 |
try:
|
23 |
payload = fo_to_payload(dataset = dataset_name,
|
24 |
gt_field = det_gt_field,
|
utils.py
CHANGED
@@ -41,7 +41,7 @@ def bbox_bep(box1, box2, xywh=False, eps=1e-7, bep1 = True):
|
|
41 |
|
42 |
return bep
|
43 |
|
44 |
-
def bbox_iou(box1, box2, xywh=
|
45 |
"""
|
46 |
Calculates IoU, GIoU, DIoU, or CIoU between two boxes, supporting xywh/xyxy formats.
|
47 |
|
|
|
41 |
|
42 |
return bep
|
43 |
|
44 |
+
def bbox_iou(box1, box2, xywh=False, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
45 |
"""
|
46 |
Calculates IoU, GIoU, DIoU, or CIoU between two boxes, supporting xywh/xyxy formats.
|
47 |
|