import torch import numpy as np import fiftyone as fo from box_metrics import BoxMetrics from seametrics.fo_utils.utils import fo_to_payload from tqdm import tqdm tags = ["WHALES"] dataset_name = "SENTRY_VIDEOS_DATASET_QA" model = "cerulean-level-17_11_2023_RL_SPLIT_ep147_CNN" det_gt_field = "ground_truth_det" dataset = fo.load_dataset(dataset_name) dataset_view = fo.load_dataset(dataset_name).match_tags(tags) if tags else fo.load_dataset(dataset_name) sequences = dataset_view.distinct("sequence") bbox_metric = BoxMetrics(max_iou=0.01) payload = fo_to_payload(dataset = dataset_name, gt_field = det_gt_field, models = [model], tracking_mode = True, sequence_list = sequences) print(payload) bbox_metric.add_payload(payload) result = bbox_metric.compute() print(result)