import torch import numpy as np import math def bbox_bep(box1, box2, xywh=True, eps=1e-7, bep1 = True): """ Calculates bottom edge proximity between two boxes Input shapes are box1(1,4) to box2(n,4) Implementation of bep2 from Are object detection assessment criteria ready for maritime computer vision? """ # Get the coordinates of bounding boxes if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ else: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) # Bottom edge distance (absolute value) # xb = torch.abs(b2_x2 - b1_x1) xb = torch.min(b2_x2-b1_x1, b1_x2-b2_x1) xa = w2 - xb xc = w1 - xb ybe = torch.abs(b2_y2 - b1_y2) X2 = xb/(xb+xa) Y2 = 1-ybe/h2 X1 = xb/(xb+xa+xc+eps) Y1 = 1-ybe/(torch.max(h2,h1)+eps) bep = X1*Y1 if bep1 else X2*Y2 return bep def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): """ Calculates IoU, GIoU, DIoU, or CIoU between two boxes, supporting xywh/xyxy formats. Input shapes are box1(1,4) to box2(n,4). """ # Get the coordinates of bounding boxes if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ else: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) # Intersection area inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * ( b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1) ).clamp(0) # Union Area union = w1 * h1 + w2 * h2 - inter + eps # IoU iou = inter / union if CIoU or DIoU or GIoU: cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw**2 + ch**2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi**2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf return iou # IoU class BoxMetrics: # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix def __init__(self): self.preds_tm = [] self.target_tm = [] self.bottom_x = [] self.bottom_y = [] self.widths = [] self.heights = [] self.ious = [] self.beps = [] def add_batch(self, preds, target): """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: detections torch(Array[N, 6]), x1, y1, x2, y2, conf, class labels torch(Array[M, 5]), class, x1, y1, x2, y2 Returns: None, updates confusion matrix accordingly """ self.preds_tm.extend(preds) self.target_tm.extend(target) def compute(self): """ Computes bbox iou, bep and location/size statistics """ for i in range(len(self.target_tm)): target_batch_boxes = self.target_tm[i][:, 1:] pred_batch_boxes = self.preds_tm[i][:, :4] if pred_batch_boxes.shape[0] == 0: continue if target_batch_boxes.shape[0] == 0: continue for t_box in target_batch_boxes: iou = bbox_iou(t_box.unsqueeze(0), pred_batch_boxes, xywh=False) bep = bbox_bep(t_box.unsqueeze(0), pred_batch_boxes, xywh=False) matches = pred_batch_boxes[iou.squeeze(1) > 0.1] bep = bep[iou > 0] iou = iou[iou > 0] # if any iou value is 0 or less, raise error if torch.any(iou <= 0): raise ValueError("IoU values must be greater than 0.") #same for bep if torch.any(bep <= 0): print(t_box.unsqueeze(0)) print(pred_batch_boxes) print(bep) print(iou) raise ValueError("BEP values must be greater than 0.") self.ious.extend(iou.tolist()) self.beps.extend(bep.tolist()) for match in matches: t_xc = (match[0].item()+match[2].item())/2 p_xc = (t_box[0].item()+t_box[2].item())/2 t_w = t_box[2].item()-t_box[0].item() p_w = match[2].item()-match[0].item() t_h = t_box[3].item()-t_box[1].item() p_h = match[3].item()-match[1].item() self.bottom_x.append(p_xc - t_xc) self.bottom_y.append(match[3].item()-t_box[3].item()) self.widths.append(p_w-t_w) self.heights.append(p_h-t_h) return {"iou_mean": np.mean(self.ious), "bep_mean": np.mean(self.beps), "bottom_x_std": np.std(self.bottom_x), "bottom_y_std": np.std(self.bottom_y), "widths_std": np.std(self.widths), "heights_std": np.std(self.heights), "bottom_x_mean": np.mean(self.bottom_x), "bottom_y_mean": np.mean(self.bottom_y), "widths_mean": np.mean(self.widths), "heights_mean": np.mean(self.heights)}