import torch import numpy as np import fiftyone as fo # from box_metrics import BoxMetrics from seametrics.fo_utils.utils import fo_to_payload from tqdm import tqdm import evaluate bbox_metric = evaluate.load("box_metrics.py") references = [torch.tensor([ [0,0,0,50,50], [0,50,50,100,100], [0,100,100,150,150] ])] predictions = {"model": [torch.tensor([ [0,0,50,50,0,0], [50,50,90,90,0,0], [100,100,140,140,0,0], [100,100,130,130,0,0] ])] } bbox_metric.add_batch(predictions, references) print(bbox_metric.boxes) result = bbox_metric.compute() for metric in result["sequence"]["model"]: print(metric, result["sequence"]["model"][metric])