import torch import numpy as np import math def bbox_bep(box1, box2, xywh=False, eps=1e-7, bep1 = True): """ Calculates bottom edge proximity between two boxes Input shapes are box1(1,4) to box2(n,4) Implementation of bep2 from Are object detection assessment criteria ready for maritime computer vision? """ # Get the coordinates of bounding boxes if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ else: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) # Bottom edge distance (absolute value) # xb = torch.abs(b2_x2 - b1_x1) xb = torch.min(b2_x2-b1_x1, b1_x2-b2_x1) xa = w2 - xb xc = w1 - xb ybe = torch.abs(b2_y2 - b1_y2) X2 = xb/(xb+xa) Y2 = 1-ybe/h2 X1 = xb/(xb+xa+xc+eps) Y1 = 1-ybe/(torch.max(h2,h1)+eps) bep = X1*Y1 if bep1 else X2*Y2 return bep def bbox_iou(box1, box2, xywh=False, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): """ Calculates IoU, GIoU, DIoU, or CIoU between two boxes, supporting xywh/xyxy formats. Input shapes are box1(1,4) to box2(n,4). """ # Get the coordinates of bounding boxes if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ else: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps) w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps) # Intersection area inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * ( b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1) ).clamp(0) # Union Area union = w1 * h1 + w2 * h2 - inter + eps # IoU iou = inter / union if CIoU or DIoU or GIoU: cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw**2 + ch**2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi**2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf return iou # IoU