File size: 11,703 Bytes
3ae0b30
12aa779
f965db0
 
 
6168220
12aa779
3ae0b30
35fe85d
3ae0b30
 
6168220
3ae0b30
 
12aa779
f965db0
12aa779
 
 
 
 
 
 
 
 
 
 
 
 
 
7af19e8
12aa779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af19e8
 
 
 
 
 
 
 
 
 
12aa779
7af19e8
 
 
 
 
 
12aa779
 
 
 
f965db0
1b40095
 
 
c921506
1b40095
 
 
12aa779
1b40095
 
 
7af19e8
1b40095
 
 
 
12aa779
27234d1
12aa779
 
 
f965db0
7af19e8
 
 
 
 
 
 
 
 
 
 
 
 
 
f965db0
 
7af19e8
 
 
 
 
 
 
12aa779
f965db0
12aa779
1b40095
12aa779
 
 
 
1b40095
12aa779
1b40095
 
 
 
 
 
 
 
 
a5e0313
1b40095
 
 
 
12aa779
7af19e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12aa779
7af19e8
 
 
12aa779
 
 
 
 
 
 
 
 
 
f965db0
7af19e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27234d1
7af19e8
 
 
 
 
 
 
 
002d3c8
7af19e8
 
f965db0
3359d6e
12aa779
 
 
 
 
f965db0
12aa779
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
---
title: det-metrics
tags:
- evaluate
- metric
description: >-
  Modified cocoevals.py which is wrapped into torchmetrics' mAP metric with numpy instead of torch dependency.
sdk: gradio
sdk_version: 4.36.0
app_file: app.py
pinned: false
emoji: 🕵️
---

# SEA-AI/det-metrics

This hugging face metric uses `seametrics.detection.PrecisionRecallF1Support` under the hood to compute coco-like metrics for object detection tasks. It is a [modified cocoeval.py](https://github.com/SEA-AI/seametrics/blob/develop/seametrics/detection/cocoeval.py) wrapped inside [torchmetrics' mAP metric](https://lightning.ai/docs/torchmetrics/stable/detection/mean_average_precision.html) but with numpy arrays instead of torch tensors.

## Getting Started

To get started with det-metrics, make sure you have the necessary dependencies installed. This metric relies on the `evaluate` and `seametrics` libraries for metric calculation and integration with FiftyOne datasets.

### Installation

First, ensure you have Python 3.8 or later installed. Then, install det-metrics using pip:

```sh
pip install evaluate git+https://github.com/SEA-AI/seametrics@develop
```

## Basic Usage

Here's how to quickly evaluate your object detection models using SEA-AI/det-metrics:

```python
import evaluate

# Define your predictions and references (dict values can also by numpy arrays)
predictions = [
    {
        "boxes": [[449.3, 197.75390625, 6.25, 7.03125], [334.3, 181.58203125, 11.5625, 6.85546875]],
        "labels": [0, 0],
        "scores": [0.153076171875, 0.72314453125],
    }
]

references = [
    {
        "boxes": [[449.3, 197.75390625, 6.25, 7.03125], [334.3, 181.58203125, 11.5625, 6.85546875]],
        "labels": [0, 0],
        "area": [132.2, 83.8],
    }
]

# Load SEA-AI/det-metrics and evaluate
module = evaluate.load("SEA-AI/det-metrics")
module.add(prediction=predictions, reference=references)
results = module.compute()

print(results)
```

This will output the following dictionary containing metrics for the detection model. The key of the dictionary will be the model name or "custom" if no model names are available like in this case.

```json
{
    "custom": {
        "metrics": ...,
        "eval": ...,
        "params": ...
    }
}
```
- `metrics`: A dictionary containing performance metrics for each area range
- `eval`: Output of COCOeval.accumulate()
- `params`: COCOeval parameters object

See [Output Values](#output-values) for more detailed information about the returned results structure, which includes metrics, eval, and params fields for each model passed as input.


## FiftyOne Integration

Integrate SEA-AI/det-metrics with FiftyOne datasets for enhanced analysis and visualization:

```python
import evaluate
import logging
from seametrics.payload.processor import PayloadProcessor

logging.basicConfig(level=logging.WARNING)

# Configure your dataset and model details
processor = PayloadProcessor(
    dataset_name="SAILING_DATASET_QA",
    gt_field="ground_truth_det",
    models=["yolov5n6_RGB_D2304-v1_9C", "tf1zoo_ssd-mobilenet-v2_agnostic_D2207"],
    sequence_list=["Trip_14_Seq_1"],
    data_type="rgb",
)

# Evaluate using SEA-AI/det-metrics
module = evaluate.load("SEA-AI/det-metrics", payload=processor.payload)
results = module.compute()

print(results)
```
This will output the following dictionary containing metrics for the detection model. The key of the dictionary will be the model name. 
```json
{
    "yolov5n6_RGB_D2304-v1_9C": {
        "metrics": ...,
        "eval": ...,
        "params": ...
    },
    "tf1zoo_ssd-mobilenet-v2_agnostic_D2207": {
        "metrics": ...,
        "eval": ...,
        "params": ...
    }
}
```

- `metrics`: A dictionary containing performance metrics for each area range
- `eval`: Output of COCOeval.accumulate()
- `params`: COCOeval parameters object

See [Output Values](#output-values) for more detailed information about the returned results structure, which includes metrics, eval, and params fields for each model passed as input.


## Metric Settings

Customize your evaluation by specifying various parameters when loading SEA-AI/det-metrics:

- **area_ranges_tuples**: Define different area ranges for metrics calculation.
- **bbox_format**: Set the bounding box format (e.g., `"xywh"`).
- **iou_threshold**: Choose the IOU threshold for determining correct detections.
- **class_agnostic**: Specify whether to calculate metrics disregarding class labels.

```python
area_ranges_tuples = [
    ("all", [0, 1e5**2]),
    ("small", [0**2, 6**2]),
    ("medium", [6**2, 12**2]),
    ("large", [12**2, 1e5**2]),
]

module = evaluate.load(
    "SEA-AI/det-metrics",
    iou_threshold=[0.00001],
    area_ranges_tuples=area_ranges_tuples,
)
```

## Output Values
For every model passed as input, the results contain the metrics, eval, and params fields. If no specific model was passed (usage without payload), the default model name “custom” will be used.

```json
{
    "model_1": {
        "metrics": ...,
        "eval": ...,
        "params": ...
    },
    "model_2": {
        "metrics": ...,
        "eval": ...,
        "params": ...
    },
    "model_3": {
        "metrics": ...,
        "eval": ...,
        "params": ...
    },
    ...
}
```

### Metrics

SEA-AI/det-metrics metrics dictionary provides a detailed breakdown of performance metrics for each specified area range:

- **range**: The area range considered.
- **iouThr**: The IOU threshold applied.
- **maxDets**: The maximum number of detections evaluated.
- **tp/fp/fn**: Counts of true positives, false positives, and false negatives.
- **duplicates**: Number of duplicate detections.
- **precision/recall/f1**: Calculated precision, recall, and F1 score.
- **support**: Number of ground truth boxes considered.
- **fpi**: Number of images with predictions but no ground truths.
- **nImgs**: Total number of images evaluated.

### Eval

The SEA-AI/det-metrics evaluation dictionary provides details about evaluation metrics and results. Below is a description of each field:

- **params**: Parameters used for evaluation, defining settings and conditions.
  
- **counts**: Dimensions of parameters used in evaluation, represented as a list [T, R, K, A, M]:
  - T: IoU threshold (default: [1e-10])
  - R: Recall threshold (not used)
  - K: Class index (class-agnostic, so only 0)
  - A: Area range (0=all, 1=valid_n, 2=valid_w, 3=tiny, 4=small, 5=medium, 6=large)
  - M: Max detections (default: [100])
  
- **date**: The date when the evaluation was performed.
  
- **precision**: A multi-dimensional array [TxRxKxAxM] storing precision values for each evaluation setting.
  
- **recall**: A multi-dimensional array [TxKxAxM] storing maximum recall values for each evaluation setting.
  
- **scores**: Scores for each detection.
  
- **TP**: True Positives - correct detections matching ground truth.
  
- **FP**: False Positives - incorrect detections not matching ground truth.
  
- **FN**: False Negatives - ground truth objects not detected.
  
- **duplicates**: Duplicate detections of the same object.
  
- **support**: Number of ground truth objects for each category.
  
- **FPI**: False Positives per Image.
  
- **TPC**: True Positives per Category.
  
- **FPC**: False Positives per Category.
  
- **sorted_conf**: Confidence scores of detections sorted in descending order.

> Note:
> **precision** and **recall** are set to -1 for settings with no ground truth objects.

### Params

The params return value of the COCO evaluation parameters in PyCOCO represents a dictionary with various evaluation settings that can be customized. Here’s a breakdown of what each parameter means:

- **imgIds**: List of image IDs to use for evaluation. By default, it evaluates on all images.
- **catIds**: List of category IDs to use for evaluation. By default, it evaluates on all categories.
- **iouThrs**: List of IoU (Intersection over Union) thresholds for evaluation. By default, it uses thresholds from 0.5 to 0.95 with a step of 0.05 (i.e., [0.5, 0.55, …, 0.95]).
- **recThrs**: List of recall thresholds for evaluation. By default, it uses 101 thresholds from 0 to 1 with a step of 0.01 (i.e., [0, 0.01, …, 1]).
- **areaRng**: Object area ranges for evaluation. This parameter defines the sizes of objects to evaluate. It is specified as a list of tuples, where each tuple represents a range of area in square pixels.
- **maxDets**: List of thresholds on maximum detections per image for evaluation. By default, it evaluates with thresholds of 1, 10, and 100 detections per image.
- **iouType**: Type of IoU calculation used for evaluation. It can be ‘segm’ (segmentation), ‘bbox’ (bounding box), or ‘keypoints’.
- **useCats**: Boolean flag indicating whether to use category labels for evaluation (default is 1, meaning true).

> Note:
> If useCats=0 category labels are ignored as in proposal scoring.
> Multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.

## Confidence Curves
When you use **module.generate_confidence_curves()**, it creates a graph that shows how metrics like **precision, recall, and f1 score** change as you adjust confidence thresholds. This helps you see the trade-offs between precision (how accurate positive predictions are) and recall (how well the model finds all positive instances) at different confidence levels. As confidence scores go up, models usually have higher precision but may find fewer positive instances, reflecting their certainty in making correct predictions.

#### Confidence Config
The `confidence_config` dictionary is set as `{"T": 0, "R": 0, "K": 0, "A": 0, "M": 0}`, where:
- `T = 0`: represents the IoU (Intersection over Union) threshold.
- `R = 0`: is the recall threshold, although it's currently not used.
- `K = 0`: indicates a class index for class-agnostic mean Average Precision (mAP), with only one class indexed at 0.
- `A = 0`: signifies that all object sizes are considered for evaluation. (0=all, 1=small, 2=medium, 3=large, ... depending on area ranges) 
- `M = 0`: sets the default maximum detections (`maxDets`) to 100 in precision_recall_f1_support calculations.


```python
import evaluate
import logging
from seametrics.payload.processor import PayloadProcessor

logging.basicConfig(level=logging.WARNING)

# Configure your dataset and model details
processor = PayloadProcessor(
    dataset_name="SAILING_DATASET_QA",
    gt_field="ground_truth_det",
    models=["yolov5n6_RGB_D2304-v1_9C"],
    sequence_list=["Trip_14_Seq_1"],
    data_type="rgb",
)

# Evaluate using SEA-AI/det-metrics
module = evaluate.load("SEA-AI/det-metrics", payload=processor.payload)
results = module.compute()

# Plot confidence curves
confidence_config={"T": 0, "R": 0, "K": 0, "A": 0, "M": 0}
fig = module.generate_confidence_curves(results, confidence_config)
fig.show()
```

![Confidence Curve](assets/example_confidence_curves.png)


## Further References

- **seametrics Library**: Explore the [seametrics GitHub repository](https://github.com/SEA-AI/seametrics/tree/main) for more details on the underlying library.
- **Pycoco Tools**: SEA-AI/det-metrics calculations are based on [pycoco tools](https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools), a widely used library for COCO dataset evaluation.
- **Understanding Metrics**: For a deeper understanding of precision, recall, and other metrics, read [this comprehensive guide](https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/).

## Contribution

Your contributions are welcome! If you'd like to improve SEA-AI/det-metrics or add new features, please feel free to fork the repository, make your changes, and submit a pull request.