File size: 10,030 Bytes
f965db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

from typing import List, Tuple, Optional, Literal

import evaluate
import datasets
import numpy as np

from modified_coco.pr_rec_f1 import PrecisionRecallF1Support


_CITATION = """\
@InProceedings{coco:2020,
title = {Microsoft {COCO:} Common Objects in Context},
authors={Tsung{-}Yi Lin and
                  Michael Maire and
                  Serge J. Belongie and
                  James Hays and
                  Pietro Perona and
                  Deva Ramanan and
                  Piotr Dollar and
                  C. Lawrence Zitnick},
booktitle    = {Computer Vision - {ECCV} 2014 - 13th European Conference, Zurich,
                Switzerland, September 6-12, 2014, Proceedings, Part {V}},
series       = {Lecture Notes in Computer Science},
volume       = {8693},
pages        = {740--755},
publisher    = {Springer},
year={2014}
}
"""

_DESCRIPTION = """\
This evaluation metric is designed to give provide object detection metrics at different object size levels.
It is based on a modified version of the commonly used COCO-evaluation metrics.
"""


_KWARGS_DESCRIPTION = """
Calculates object detection metrics given predicted and ground truth bounding boxes for a single image.
Args:
    predictions: list of predictions to score. Each prediction should
        be a list containing the four co-ordinates that specify the bounding box.
        Co-ordinate format is as defined when instantiating the metric
        (parameter: bbox_type, defaults to xywh).
    references: list of reference for each prediction. Each prediction should
        be a list containing the four co-ordinates that specify the bounding box.
        Bounding box format should be the same as for the predictions.
Returns:
    dict containing dicts for each specified area range with following items:
        'range': specified area with [max_px_area, max_px_area]
        'iouThr': min. IOU-threshold of a prediction with a ground truth box
            to be considered a correct prediction
        'maxDets': maximum number of detections
        'tp': number of true positive (correct) predictions
        'fp': number of false positive (incorrect) predictions
        'fn': number of false negative (missed) predictions
        'duplicates': number of duplicate predictions
        'precision': best possible score = 1, worst possible score = 0
            large if few false positive predictions
            formula: tp/(fp+tp)
        'recall' best possible score = 1, worst possible score = 0
            large if few missed predictions 
            formula: tp/(tp+fn)
        'f1': best possible score = 1, worst possible score = 0
            trades off precision and recall
            formula: 2*(precision*recall)/(precision+recall)
        'support': number of ground truth bounding boxes considered in the evaluation,
        'fpi': number of images with no ground truth but false positive predictions,
        'nImgs': number of images considered in evaluation
Examples:
    >>> module = evaluate.load("./detection_metric.py", iou_thresholds=0.9)
    >>> predictions = [
            [
                [10, 15, 20, 25],
                [45, 30, 10, 10]
            ],[
                [14, 25, 6, 6],
                [10, 16, 6, 10]
            ]
        ]
    >>> references = [
            [[10, 15, 20, 20]],
            [[30, 30, 5, 6]]
        ]
    >>> module.add_batch(predictions=predictions, references=references, predictions_scores=[[0.5,0.3],[0.8, 0.1]])
    >>> result = module.compute()
    >>> print(result)
    {'all': {
        'range': [0, 10000000000.0],
        'iouThr': '0.00',
        'maxDets': 100,
        'tp': 1,
        'fp': 3,
        'fn': 1,
        'duplicates': 0,
        'precision': 0.25,
        'recall': 0.5,
        'f1': 0.3333333333333333,
        'support': 2,
        'fpi': 0,
        'nImgs': 2
        }
    }
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class DetectionMetric(evaluate.Metric):
    def __init__(
            self, 
            area_ranges_tuples: List[Tuple[str, List[int]]] = [("all", [0, 1e5 ** 2])], 
            iou_threshold: float = 1e-10, 
            class_agnostic: bool = True,
            bbox_format: str = "xywh",
            iou_type: Literal["bbox", "segm"] = "bbox",
            **kwargs
        ):
        super().__init__(**kwargs)
        area_ranges = [v for _, v in area_ranges_tuples]
        area_ranges_labels = [k for k, _ in area_ranges_tuples]

        metric_params = dict(
            iou_thresholds=[iou_threshold],
            area_ranges=area_ranges,
            area_ranges_labels=area_ranges_labels,
            class_agnostic=class_agnostic,
            iou_type=iou_type,
            box_format=bbox_format
        )
        self.coco_metric = PrecisionRecallF1Support(**metric_params)

    def _info(self):
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                'predictions': datasets.Sequence(feature=datasets.Sequence(datasets.Value("float"))),
                'references': datasets.Sequence(feature=datasets.Sequence(datasets.Value("float"))),
                }
            ),
            # Additional links to the codebase or references
            codebase_urls=["https://github.com/SEA-AI/metrics/tree/main",
                           "https://github.com/cocodataset/cocoapi/tree/master"]
        )
    
    def add_batch(
            self, 
            predictions, 
            references,
            predictions_labels: Optional[np.ndarray] = None,
            predictions_scores: Optional[np.ndarray] = None,
            references_labels: Optional[np.ndarray] = None
        ):
        """Add predictions and ground truths of a single image to update the metric.

        Args:
            predictions (List[List[List[int]]]): predicted bounding boxes, shape: (n_images, m_pred_boxes, 4)
            references (List[List[List[int]]]): ground truth bounding boxes, shape: (n_images, l_gt_boxes, 4)
            predictions_labels (Optional[np.ndarray], optional): Labels of predicted bounding boxes, shape: (n_images, m_pred_boxes). 
                Defaults to None.
            predictions_scores (Optional[np.ndarray], optional): Scores of predicted bounding boxes, shape: (n_images, m_pred_boxes).
                Defaults to None.
            references_labels (Optional[np.ndarray], optional): Labels of predicted bounding boxes, shape: (n_images, l_pred_boxes). 
                Defaults to None.
        """
        if predictions_labels is None:
            predictions_labels = [None]*len(predictions)
        if predictions_scores is None:
            predictions_scores = [None]*len(predictions)
        if references_labels is None:
            references_labels = [None]*len(references)
        for pred, ref, pred_score, pred_l, ref_l in zip(predictions, 
                                                        references, 
                                                        predictions_scores,
                                                        predictions_labels, 
                                                        references_labels):
            preds, targets = self.process_preds_references(pred, ref, pred_l, pred_score, ref_l)
            self.coco_metric.update(preds, targets)
        super(evaluate.Metric, self).add_batch(predictions=predictions, references=references)

    def _compute(
            self, 
            predictions, 
            references
        ):
        """Returns the scores"""
        result = self.coco_metric.compute()["metrics"]
        return result
    
    @staticmethod
    def process_preds_references(
            predictions,
            references,
            predictions_labels: Optional[np.ndarray] = None,
            predictions_scores: Optional[np.ndarray] = None,
            references_labels: Optional[np.ndarray] = None
        ):
        if predictions_scores is None:
            predictions_scores = np.ones(shape=len(predictions), dtype=np.float32)
        else:
            predictions_scores = np.array(predictions_scores, dtype=np.float32)
        if predictions_labels is None:
            if references_labels is not None:
                print("Warning: Providing no prediction labels, but ground truth labels!")
            predictions_labels = np.zeros(shape=len(predictions), dtype=np.int16)
        else:
            predictions_labels = np.array(predictions_labels)
        if references_labels is None:
            references_labels = np.zeros(shape=len(references), dtype=np.int16)
        else:
            references_labels = np.array(references_labels)

        preds = [
            dict(
                boxes=np.array(predictions),
                scores=predictions_scores,
                labels=predictions_labels
            )
        ]
        target = [
            dict(
                boxes=np.array(references),
                labels=references_labels
            )
        ]

        return preds, target