File size: 28,195 Bytes
f965db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# NOTE: This metric is based on torchmetrics.detection.mean_ap and
# then modified to support the evaluation of precision, recall, f1 and support
# for object detection. It can also be used to evaluate the mean average precision
# but some modifications are needed. Additionally, numpy is used instead of torch

import contextlib
import io
import json
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing_extensions import Literal
import numpy as np
from modified_coco.utils import _fix_empty_arrays, _input_validator, box_convert

try:
    import pycocotools.mask as mask_utils
    from pycocotools.coco import COCO
    # from pycocotools.cocoeval import COCOeval
    from modified_coco.cocoeval import COCOeval  # use our own version of COCOeval
except ImportError:
    raise ModuleNotFoundError(
        "`MAP` metric requires that `pycocotools` installed."
        " Please install with `pip install pycocotools`"
    )

class PrecisionRecallF1Support:
    r"""Compute the Precision, Recall, F1 and Support scores for object detection.

    - Precision = :math:`\frac{TP}{TP + FP}`
    - Recall = :math:`\frac{TP}{TP + FN}`
    - F1 = :math:`\frac{2 * Precision * Recall}{Precision + Recall}`
    - Support = :math:`TP + FN`

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
      (each dictionary corresponds to a single image). Parameters that should be provided per dict:
        - boxes: (:class:`~np.ndarray`) of shape ``(num_boxes, 4)`` containing ``num_boxes`` 
        detection boxes of the format specified in the constructor. By default, this method expects 
        ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
        - scores: :class:`~np.ndarray` of shape ``(num_boxes)`` containing detection scores 
        for the boxes.
        - labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed detection 
        classes for the boxes.
        - masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)`` containing 
        boolean masks. Only required when `iou_type="segm"`.

    - ``target`` (:class:`~List`) A list consisting of dictionaries each containing the key-values
      (each dictionary corresponds to a single image). Parameters that should be provided per dict:
        - boxes: :class:`~np.ndarray` of shape ``(num_boxes, 4)`` containing ``num_boxes`` 
        ground truth boxes of the format specified in the constructor. By default, this method 
        expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
        - labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed ground 
        truth classes for the boxes.
        - masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)`` 
        containing boolean masks. Only required when `iou_type="segm"`.
        - iscrowd: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0/1 values 
        indicating whether the bounding box/masks indicate a crowd of objects. Value is optional, 
        and if not provided it will automatically be set to 0.
        - area: :class:`~np.ndarray` of shape ``(num_boxes)`` containing the area of the 
        object. Value if optional, and if not provided will be automatically calculated based 
        on the bounding box/masks provided. Only affects when 'area_ranges' is provided.

    As output of ``forward`` and ``compute`` the metric returns the following output:

    - ``results``: A dictionary containing the following key-values:

        - ``params``: COCOeval parameters object
        - ``eval``: output of COCOeval.accumuate()
        - ``metrics``: A dictionary containing the following key-values for each area range:
            - ``area_range``: str containing the area range
            - ``iouThr``: str containing the IoU threshold
            - ``maxDets``: int containing the maximum number of detections
            - ``tp``: int containing the number of true positives
            - ``fp``: int containing the number of false positives
            - ``fn``: int containing the number of false negatives
            - ``precision``: float containing the precision
            - ``recall``: float containing the recall
            - ``f1``: float containing the f1 score
            - ``support``: int containing the support (tp + fn)

    .. note::
        This metric utilizes the official `pycocotools` implementation as its backend. This means that the metric
        requires you to have `pycocotools` installed. In addition we require `torchvision` version 0.8.0 or newer.
        Please install with ``pip install torchmetrics[detection]``.

    Args:
        box_format:
            Input format of given boxes. Supported formats are ``[xyxy, xywh, cxcywh]``.
        iou_type:
            Type of input (either masks or bounding-boxes) used for computing IOU.
            Supported IOU types are ``["bbox", "segm"]``. If using ``"segm"``, masks should be provided in input.
        iou_thresholds:
            IoU thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0.5,...,0.95]``
            with step ``0.05``. Else provide a list of floats.
        rec_thresholds:
            Recall thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0,...,1]``
            with step ``0.01``. Else provide a list of floats.
        max_detection_thresholds:
            Thresholds on max detections per image. If set to `None` will use thresholds ``[100]``.
            Else, please provide a list of ints.
        area_ranges:
            Area ranges for evaluation. If set to ``None`` it corresponds to the ranges ``[[0^2, 1e5^2]]``.
            Else, please provide a list of lists of length 2.
        area_ranges_labels:
            Labels for the area ranges. If set to ``None`` it corresponds to the labels ``["all"]``.
            Else, please provide a list of strings of the same length as ``area_ranges``.
        class_agnostic:
            If ``True`` will compute metrics globally. If ``False`` will compute metrics per class.
            Default: ``True`` (per class metrics are not supported yet)
        debug:
            If ``True`` will print the COCOEval summary to stdout.
        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Raises:
        ValueError:
            If ``box_format`` is not one of ``"xyxy"``, ``"xywh"`` or ``"cxcywh"``
        ValueError:
            If ``iou_type`` is not one of ``"bbox"`` or ``"segm"``
        ValueError:
            If ``iou_thresholds`` is not None or a list of floats
        ValueError:
            If ``rec_thresholds`` is not None or a list of floats
        ValueError:
            If ``max_detection_thresholds`` is not None or a list of ints
        ValueError:
            If ``area_ranges`` is not None or a list of lists of length 2
        ValueError:
            If ``area_ranges_labels`` is not None or a list of strings

    Example:
        >>> import numpy as np
        >>> from metrics.detection import MeanAveragePrecision
        >>> preds = [
        ...   dict(
        ...     boxes=np.array([[258.0, 41.0, 606.0, 285.0]]),
        ...     scores=np.array([0.536]),
        ...     labels=np.array([0]),
        ...   )
        ... ]
        >>> target = [
        ...   dict(
        ...     boxes=np.array([[214.0, 41.0, 562.0, 285.0]]),
        ...     labels=np.array([0]),
        ...   )
        ... ]
        >>> metric = PrecisionRecallF1Support()
        >>> metric.update(preds, target)
        >>> print(metric.compute())
        {'params': <metrics.detection.cocoeval.Params at 0x16dc99150>,
         'eval': ... output of COCOeval.accumuate(),
         'metrics': {'all': {'range': [0, 10000000000.0],
         'iouThr': '0.50',
         'maxDets': 100,
         'tp': 1,
         'fp': 0,
         'fn': 0,
         'precision': 1.0,
         'recall': 1.0,
         'f1': 1.0,
         'support': 1}}}
    """
    is_differentiable: bool = False
    higher_is_better: Optional[bool] = True
    full_state_update: bool = True
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    detections: List[np.ndarray]
    detection_scores: List[np.ndarray]
    detection_labels: List[np.ndarray]
    groundtruths: List[np.ndarray]
    groundtruth_labels: List[np.ndarray]
    groundtruth_crowds: List[np.ndarray]
    groundtruth_area: List[np.ndarray]

    def __init__(
        self,
        box_format: str = "xyxy",
        iou_type: Literal["bbox", "segm"] = "bbox",
        iou_thresholds: Optional[List[float]] = None,
        rec_thresholds: Optional[List[float]] = None,
        max_detection_thresholds: Optional[List[int]] = None,
        area_ranges: Optional[List[List[int]]] = None,
        area_ranges_labels: Optional[List[str]] = None,
        class_agnostic: bool = True,
        debug: bool = False,
        **kwargs: Any,
    ) -> None:

        allowed_box_formats = ("xyxy", "xywh", "cxcywh")
        if box_format not in allowed_box_formats:
            raise ValueError(
                f"Expected argument `box_format` to be one of {allowed_box_formats} but got {box_format}")
        self.box_format = box_format

        allowed_iou_types = ("segm", "bbox")
        if iou_type not in allowed_iou_types:
            raise ValueError(
                f"Expected argument `iou_type` to be one of {allowed_iou_types} but got {iou_type}")
        self.iou_type = iou_type

        if iou_thresholds is not None and not isinstance(iou_thresholds, list):
            raise ValueError(
                f"Expected argument `iou_thresholds` to either be `None` or a list of floats but got {iou_thresholds}"
            )
        self.iou_thresholds = iou_thresholds or np.linspace(
            0.5, 0.95, round((0.95 - 0.5) / 0.05) + 1).tolist()

        if rec_thresholds is not None and not isinstance(rec_thresholds, list):
            raise ValueError(
                f"Expected argument `rec_thresholds` to either be `None` or a list of floats but got {rec_thresholds}"
            )
        self.rec_thresholds = rec_thresholds or np.linspace(
            0.0, 1.00, round(1.00 / 0.01) + 1).tolist()

        if max_detection_thresholds is not None and not isinstance(max_detection_thresholds, list):
            raise ValueError(
                f"Expected argument `max_detection_thresholds` to either be `None` or a list of ints"
                f" but got {max_detection_thresholds}"
            )
        max_det_thr = np.sort(np.array(
            max_detection_thresholds or [100], dtype=np.uint))
        self.max_detection_thresholds = max_det_thr.tolist()

        # check area ranges
        if area_ranges is not None:
            if not isinstance(area_ranges, list):
                raise ValueError(
                    f"Expected argument `area_ranges` to either be `None` or a list of lists but got {area_ranges}"
                )
            for area_range in area_ranges:
                if not isinstance(area_range, list) or len(area_range) != 2:
                    raise ValueError(
                        f"Expected argument `area_ranges` to be a list of lists of length 2 but got {area_ranges}"
                    )
        self.area_ranges = area_ranges if area_ranges is not None else [
            [0**2, 1e5**2]]

        if area_ranges_labels is not None:
            if area_ranges is None:
                raise ValueError(
                    "Expected argument `area_ranges_labels` to be `None` if `area_ranges` is not provided"
                )
            if not isinstance(area_ranges_labels, list):
                raise ValueError(
                    f"Expected argument `area_ranges_labels` to either be `None` or a list of strings"
                    f" but got {area_ranges_labels}"
                )
            if len(area_ranges_labels) != len(area_ranges):
                raise ValueError(
                    f"Expected argument `area_ranges_labels` to be a list of length {len(area_ranges)}"
                    f" but got {area_ranges_labels}"
                )
        self.area_ranges_labels = area_ranges_labels if area_ranges_labels is not None else [
            "all"]

        # if not isinstance(class_metrics, bool):
        #     raise ValueError(
        #         "Expected argument `class_metrics` to be a boolean")
        # self.class_metrics = class_metrics

        if not isinstance(class_agnostic, bool):
            raise ValueError(
                "Expected argument `class_agnostic` to be a boolean")
        self.class_agnostic = class_agnostic

        if not isinstance(debug, bool):
            raise ValueError("Expected argument `debug` to be a boolean")
        self.debug = debug

        self.detections = []
        self.detection_scores = []
        self.detection_labels = []
        self.groundtruths = []
        self.groundtruth_labels = []
        self.groundtruth_crowds = []
        self.groundtruth_area = []

        # self.add_state("detections", default=[], dist_reduce_fx=None)
        # self.add_state("detection_scores", default=[], dist_reduce_fx=None)
        # self.add_state("detection_labels", default=[], dist_reduce_fx=None)
        # self.add_state("groundtruths", default=[], dist_reduce_fx=None)
        # self.add_state("groundtruth_labels", default=[], dist_reduce_fx=None)
        # self.add_state("groundtruth_crowds", default=[], dist_reduce_fx=None)
        # self.add_state("groundtruth_area", default=[], dist_reduce_fx=None)

    def update(self, preds: List[Dict[str, np.ndarray]], target: List[Dict[str, np.ndarray]]) -> None:
        """Update metric state.

        Raises:
            ValueError:
                If ``preds`` is not of type (:class:`~List[Dict[str, np.ndarray]]`)
            ValueError:
                If ``target`` is not of type ``List[Dict[str, np.ndarray]]``
            ValueError:
                If ``preds`` and ``target`` are not of the same length
            ValueError:
                If any of ``preds.boxes``, ``preds.scores`` and ``preds.labels`` are not of the same length
            ValueError:
                If any of ``target.boxes`` and ``target.labels`` are not of the same length
            ValueError:
                If any box is not type float and of length 4
            ValueError:
                If any class is not type int and of length 1
            ValueError:
                If any score is not type float and of length 1
        """
        _input_validator(preds, target, iou_type=self.iou_type)

        for item in preds:
            detections = self._get_safe_item_values(item)

            self.detections.append(detections)
            self.detection_labels.append(item["labels"])
            self.detection_scores.append(item["scores"])

        for item in target:
            groundtruths = self._get_safe_item_values(item)
            self.groundtruths.append(groundtruths)
            self.groundtruth_labels.append(item["labels"])
            self.groundtruth_crowds.append(
                item.get("iscrowd", np.zeros_like(item["labels"])))
            self.groundtruth_area.append(
                item.get("area", np.zeros_like(item["labels"])))

    def compute(self) -> dict:
        """Computes the metric."""
        coco_target, coco_preds = COCO(), COCO()

        coco_target.dataset = self._get_coco_format(
            self.groundtruths, self.groundtruth_labels, crowds=self.groundtruth_crowds, area=self.groundtruth_area
        )
        coco_preds.dataset = self._get_coco_format(
            self.detections, self.detection_labels, scores=self.detection_scores)

        with contextlib.redirect_stdout(io.StringIO()) as f:
            coco_target.createIndex()
            coco_preds.createIndex()

            coco_eval = COCOeval(coco_target, coco_preds,
                                 iouType=self.iou_type)
            coco_eval.params.iouThrs = np.array(
                self.iou_thresholds, dtype=np.float64)
            coco_eval.params.recThrs = np.array(
                self.rec_thresholds, dtype=np.float64)
            coco_eval.params.maxDets = self.max_detection_thresholds
            coco_eval.params.areaRng = self.area_ranges
            coco_eval.params.areaRngLbl = self.area_ranges_labels
            coco_eval.params.useCats = 0 if self.class_agnostic else 1

            coco_eval.evaluate()
            coco_eval.accumulate()

        if self.debug:
            print(f.getvalue())

        metrics = coco_eval.summarize()
        return metrics

    @staticmethod
    def coco_to_np(
        coco_preds: str,
        coco_target: str,
        iou_type: Literal["bbox", "segm"] = "bbox",
    ) -> Tuple[List[Dict[str, np.ndarray]], List[Dict[str, np.ndarray]]]:
        """Utility function for converting .json coco format files to the input format of this metric.

        The function accepts a file for the predictions and a file for the target in coco format and converts them to
        a list of dictionaries containing the boxes, labels and scores in the input format of this metric.

        Args:
            coco_preds: Path to the json file containing the predictions in coco format
            coco_target: Path to the json file containing the targets in coco format
            iou_type: Type of input, either `bbox` for bounding boxes or `segm` for segmentation masks

        Returns:
            preds: List of dictionaries containing the predictions in the input format of this metric
            target: List of dictionaries containing the targets in the input format of this metric

        Example:
            >>> # File formats are defined at https://cocodataset.org/#format-data
            >>> # Example files can be found at
            >>> # https://github.com/cocodataset/cocoapi/tree/master/results
            >>> from torchmetrics.detection import MeanAveragePrecision
            >>> preds, target = MeanAveragePrecision.coco_to_tm(
            ...   "instances_val2014_fakebbox100_results.json.json",
            ...   "val2014_fake_eval_res.txt.json"
            ...   iou_type="bbox"
            ... )  # doctest: +SKIP

        """
        with contextlib.redirect_stdout(io.StringIO()):
            gt = COCO(coco_target)
            dt = gt.loadRes(coco_preds)

        gt_dataset = gt.dataset["annotations"]
        dt_dataset = dt.dataset["annotations"]

        target = {}
        for t in gt_dataset:
            if t["image_id"] not in target:
                target[t["image_id"]] = {
                    "boxes" if iou_type == "bbox" else "masks": [],
                    "labels": [],
                    "iscrowd": [],
                    "area": [],
                }
            if iou_type == "bbox":
                target[t["image_id"]]["boxes"].append(t["bbox"])
            else:
                target[t["image_id"]]["masks"].append(gt.annToMask(t))
            target[t["image_id"]]["labels"].append(t["category_id"])
            target[t["image_id"]]["iscrowd"].append(t["iscrowd"])
            target[t["image_id"]]["area"].append(t["area"])

        preds = {}
        for p in dt_dataset:
            if p["image_id"] not in preds:
                preds[p["image_id"]] = {
                    "boxes" if iou_type == "bbox" else "masks": [], "scores": [], "labels": []}
            if iou_type == "bbox":
                preds[p["image_id"]]["boxes"].append(p["bbox"])
            else:
                preds[p["image_id"]]["masks"].append(gt.annToMask(p))
            preds[p["image_id"]]["scores"].append(p["score"])
            preds[p["image_id"]]["labels"].append(p["category_id"])
        for k in target:  # add empty predictions for images without predictions
            if k not in preds:
                preds[k] = {"boxes" if iou_type ==
                            "bbox" else "masks": [], "scores": [], "labels": []}

        batched_preds, batched_target = [], []
        for key in target:
            name = "boxes" if iou_type == "bbox" else "masks"
            batched_preds.append(
                {
                    name: np.array(
                        np.array(preds[key]["boxes"]), dtype=np.float32)
                    if iou_type == "bbox"
                    else np.array(np.array(preds[key]["masks"]), dtype=np.uint8),
                    "scores": np.array(preds[key]["scores"], dtype=np.float32),
                    "labels": np.array(preds[key]["labels"], dtype=np.int32),
                }
            )
            batched_target.append(
                {
                    name: np.array(
                        target[key]["boxes"], dtype=np.float32)
                    if iou_type == "bbox"
                    else np.array(np.array(target[key]["masks"]), dtype=np.uint8),
                    "labels": np.array(target[key]["labels"], dtype=np.int32),
                    "iscrowd": np.array(target[key]["iscrowd"], dtype=np.int32),
                    "area": np.array(target[key]["area"], dtype=np.float32),
                }
            )

        return batched_preds, batched_target

    def np_to_coco(self, name: str = "np_map_input") -> None:
        """Utility function for converting the input for this metric to coco format and saving it to a json file.

        This function should be used after calling `.update(...)` or `.forward(...)` on all data that should be written
        to the file, as the input is then internally cached. The function then converts to information to coco format
        a writes it to json files.

        Args:
            name: Name of the output file, which will be appended with "_preds.json" and "_target.json"
        
        Example:
            >>> import numpy as np
            >>> from metrics.detection import MeanAveragePrecision
            >>> preds = [
            ...   dict(
            ...     boxes=np.array([[258.0, 41.0, 606.0, 285.0]]),
            ...     scores=np.array([0.536]),
            ...     labels=np.array([0]),
            ...   )
            ... ]
            >>> target = [
            ...   dict(
            ...     boxes=np.array([[214.0, 41.0, 562.0, 285.0]]),
            ...     labels=np.array([0]),
            ...   )
            ... ]
            >>> metric = PrecisionRecallF1Support()
            >>> metric.update(preds, target)
            >>> metric.np_to_coco("np_map_input")  # doctest: +SKIP

        """
        target_dataset = self._get_coco_format(
            self.groundtruths, self.groundtruth_labels)
        preds_dataset = self._get_coco_format(
            self.detections, self.detection_labels, self.detection_scores)

        preds_json = json.dumps(preds_dataset["annotations"], indent=4)
        target_json = json.dumps(target_dataset, indent=4)

        with open(f"{name}_preds.json", "w") as f:
            f.write(preds_json)

        with open(f"{name}_target.json", "w") as f:
            f.write(target_json)

    def _get_safe_item_values(self, item: Dict[str, Any]) -> Union[np.ndarray, Tuple]:
        """Convert and return the boxes or masks from the item depending on the iou_type.

        Args:
            item: input dictionary containing the boxes or masks

        Returns:
            boxes or masks depending on the iou_type

        """
        if self.iou_type == "bbox":
            boxes = _fix_empty_arrays(item["boxes"])
            if boxes.size > 0:
                boxes = box_convert(
                    boxes, in_fmt=self.box_format, out_fmt="xywh")
            return boxes
        if self.iou_type == "segm":
            masks = []
            for i in item["masks"]:
                rle = mask_utils.encode(np.asfortranarray(i))
                masks.append((tuple(rle["size"]), rle["counts"]))
            return tuple(masks)
        raise Exception(f"IOU type {self.iou_type} is not supported")

    def _get_classes(self) -> List:
        """Return a list of unique classes found in ground truth and detection data."""
        all_labels = np.concatenate(
            self.detection_labels + self.groundtruth_labels)
        unique_classes = np.unique(all_labels)
        return unique_classes.tolist()

    def _get_coco_format(
        self,
        boxes: List[np.ndarray],
        labels: List[np.ndarray],
        scores: Optional[List[np.ndarray]] = None,
        crowds: Optional[List[np.ndarray]] = None,
        area: Optional[List[np.ndarray]] = None,
    ) -> Dict:
        """Transforms and returns all cached targets or predictions in COCO format.

        Format is defined at https://cocodataset.org/#format-data
        """
        images = []
        annotations = []
        annotation_id = 1  # has to start with 1, otherwise COCOEval results are wrong

        for image_id, (image_boxes, image_labels) in enumerate(zip(boxes, labels)):
            if self.iou_type == "segm" and len(image_boxes) == 0:
                continue

            if self.iou_type == "bbox":
                image_boxes = image_boxes.tolist()
            image_labels = image_labels.tolist()

            images.append({"id": image_id})
            if self.iou_type == "segm":
                images[-1]["height"], images[-1]["width"] = image_boxes[0][0][0], image_boxes[0][0][1]

            for k, (image_box, image_label) in enumerate(zip(image_boxes, image_labels)):
                if self.iou_type == "bbox" and len(image_box) != 4:
                    raise ValueError(
                        f"Invalid input box of sample {image_id}, element {k} (expected 4 values, got {len(image_box)})"
                    )

                if not isinstance(image_label, int):
                    raise ValueError(
                        f"Invalid input class of sample {image_id}, element {k}"
                        f" (expected value of type integer, got type {type(image_label)})"
                    )

                stat = image_box if self.iou_type == "bbox" else {
                    "size": image_box[0], "counts": image_box[1]}

                if area is not None and area[image_id][k].tolist() > 0:
                    area_stat = area[image_id][k].tolist()
                else:
                    area_stat = image_box[2] * \
                        image_box[3] if self.iou_type == "bbox" else mask_utils.area(
                            stat)

                annotation = {
                    "id": annotation_id,
                    "image_id": image_id,
                    "bbox" if self.iou_type == "bbox" else "segmentation": stat,
                    "area": area_stat,
                    "category_id": image_label,
                    "iscrowd": crowds[image_id][k].tolist() if crowds is not None else 0,
                }

                if scores is not None:
                    score = scores[image_id][k].tolist()
                    if not isinstance(score, float):
                        raise ValueError(
                            f"Invalid input score of sample {image_id}, element {k}"
                            f" (expected value of type float, got type {type(score)})"
                        )
                    annotation["score"] = score
                annotations.append(annotation)
                annotation_id += 1

        classes = [{"id": i, "name": str(i)} for i in self._get_classes()]
        return {"images": images, "annotations": annotations, "categories": classes}