Spaces:
Sleeping
Sleeping
File size: 28,195 Bytes
f965db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# NOTE: This metric is based on torchmetrics.detection.mean_ap and
# then modified to support the evaluation of precision, recall, f1 and support
# for object detection. It can also be used to evaluate the mean average precision
# but some modifications are needed. Additionally, numpy is used instead of torch
import contextlib
import io
import json
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing_extensions import Literal
import numpy as np
from modified_coco.utils import _fix_empty_arrays, _input_validator, box_convert
try:
import pycocotools.mask as mask_utils
from pycocotools.coco import COCO
# from pycocotools.cocoeval import COCOeval
from modified_coco.cocoeval import COCOeval # use our own version of COCOeval
except ImportError:
raise ModuleNotFoundError(
"`MAP` metric requires that `pycocotools` installed."
" Please install with `pip install pycocotools`"
)
class PrecisionRecallF1Support:
r"""Compute the Precision, Recall, F1 and Support scores for object detection.
- Precision = :math:`\frac{TP}{TP + FP}`
- Recall = :math:`\frac{TP}{TP + FN}`
- F1 = :math:`\frac{2 * Precision * Recall}{Precision + Recall}`
- Support = :math:`TP + FN`
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
(each dictionary corresponds to a single image). Parameters that should be provided per dict:
- boxes: (:class:`~np.ndarray`) of shape ``(num_boxes, 4)`` containing ``num_boxes``
detection boxes of the format specified in the constructor. By default, this method expects
``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
- scores: :class:`~np.ndarray` of shape ``(num_boxes)`` containing detection scores
for the boxes.
- labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed detection
classes for the boxes.
- masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)`` containing
boolean masks. Only required when `iou_type="segm"`.
- ``target`` (:class:`~List`) A list consisting of dictionaries each containing the key-values
(each dictionary corresponds to a single image). Parameters that should be provided per dict:
- boxes: :class:`~np.ndarray` of shape ``(num_boxes, 4)`` containing ``num_boxes``
ground truth boxes of the format specified in the constructor. By default, this method
expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
- labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed ground
truth classes for the boxes.
- masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)``
containing boolean masks. Only required when `iou_type="segm"`.
- iscrowd: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0/1 values
indicating whether the bounding box/masks indicate a crowd of objects. Value is optional,
and if not provided it will automatically be set to 0.
- area: :class:`~np.ndarray` of shape ``(num_boxes)`` containing the area of the
object. Value if optional, and if not provided will be automatically calculated based
on the bounding box/masks provided. Only affects when 'area_ranges' is provided.
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``results``: A dictionary containing the following key-values:
- ``params``: COCOeval parameters object
- ``eval``: output of COCOeval.accumuate()
- ``metrics``: A dictionary containing the following key-values for each area range:
- ``area_range``: str containing the area range
- ``iouThr``: str containing the IoU threshold
- ``maxDets``: int containing the maximum number of detections
- ``tp``: int containing the number of true positives
- ``fp``: int containing the number of false positives
- ``fn``: int containing the number of false negatives
- ``precision``: float containing the precision
- ``recall``: float containing the recall
- ``f1``: float containing the f1 score
- ``support``: int containing the support (tp + fn)
.. note::
This metric utilizes the official `pycocotools` implementation as its backend. This means that the metric
requires you to have `pycocotools` installed. In addition we require `torchvision` version 0.8.0 or newer.
Please install with ``pip install torchmetrics[detection]``.
Args:
box_format:
Input format of given boxes. Supported formats are ``[xyxy, xywh, cxcywh]``.
iou_type:
Type of input (either masks or bounding-boxes) used for computing IOU.
Supported IOU types are ``["bbox", "segm"]``. If using ``"segm"``, masks should be provided in input.
iou_thresholds:
IoU thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0.5,...,0.95]``
with step ``0.05``. Else provide a list of floats.
rec_thresholds:
Recall thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0,...,1]``
with step ``0.01``. Else provide a list of floats.
max_detection_thresholds:
Thresholds on max detections per image. If set to `None` will use thresholds ``[100]``.
Else, please provide a list of ints.
area_ranges:
Area ranges for evaluation. If set to ``None`` it corresponds to the ranges ``[[0^2, 1e5^2]]``.
Else, please provide a list of lists of length 2.
area_ranges_labels:
Labels for the area ranges. If set to ``None`` it corresponds to the labels ``["all"]``.
Else, please provide a list of strings of the same length as ``area_ranges``.
class_agnostic:
If ``True`` will compute metrics globally. If ``False`` will compute metrics per class.
Default: ``True`` (per class metrics are not supported yet)
debug:
If ``True`` will print the COCOEval summary to stdout.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ValueError:
If ``box_format`` is not one of ``"xyxy"``, ``"xywh"`` or ``"cxcywh"``
ValueError:
If ``iou_type`` is not one of ``"bbox"`` or ``"segm"``
ValueError:
If ``iou_thresholds`` is not None or a list of floats
ValueError:
If ``rec_thresholds`` is not None or a list of floats
ValueError:
If ``max_detection_thresholds`` is not None or a list of ints
ValueError:
If ``area_ranges`` is not None or a list of lists of length 2
ValueError:
If ``area_ranges_labels`` is not None or a list of strings
Example:
>>> import numpy as np
>>> from metrics.detection import MeanAveragePrecision
>>> preds = [
... dict(
... boxes=np.array([[258.0, 41.0, 606.0, 285.0]]),
... scores=np.array([0.536]),
... labels=np.array([0]),
... )
... ]
>>> target = [
... dict(
... boxes=np.array([[214.0, 41.0, 562.0, 285.0]]),
... labels=np.array([0]),
... )
... ]
>>> metric = PrecisionRecallF1Support()
>>> metric.update(preds, target)
>>> print(metric.compute())
{'params': <metrics.detection.cocoeval.Params at 0x16dc99150>,
'eval': ... output of COCOeval.accumuate(),
'metrics': {'all': {'range': [0, 10000000000.0],
'iouThr': '0.50',
'maxDets': 100,
'tp': 1,
'fp': 0,
'fn': 0,
'precision': 1.0,
'recall': 1.0,
'f1': 1.0,
'support': 1}}}
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = True
full_state_update: bool = True
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
detections: List[np.ndarray]
detection_scores: List[np.ndarray]
detection_labels: List[np.ndarray]
groundtruths: List[np.ndarray]
groundtruth_labels: List[np.ndarray]
groundtruth_crowds: List[np.ndarray]
groundtruth_area: List[np.ndarray]
def __init__(
self,
box_format: str = "xyxy",
iou_type: Literal["bbox", "segm"] = "bbox",
iou_thresholds: Optional[List[float]] = None,
rec_thresholds: Optional[List[float]] = None,
max_detection_thresholds: Optional[List[int]] = None,
area_ranges: Optional[List[List[int]]] = None,
area_ranges_labels: Optional[List[str]] = None,
class_agnostic: bool = True,
debug: bool = False,
**kwargs: Any,
) -> None:
allowed_box_formats = ("xyxy", "xywh", "cxcywh")
if box_format not in allowed_box_formats:
raise ValueError(
f"Expected argument `box_format` to be one of {allowed_box_formats} but got {box_format}")
self.box_format = box_format
allowed_iou_types = ("segm", "bbox")
if iou_type not in allowed_iou_types:
raise ValueError(
f"Expected argument `iou_type` to be one of {allowed_iou_types} but got {iou_type}")
self.iou_type = iou_type
if iou_thresholds is not None and not isinstance(iou_thresholds, list):
raise ValueError(
f"Expected argument `iou_thresholds` to either be `None` or a list of floats but got {iou_thresholds}"
)
self.iou_thresholds = iou_thresholds or np.linspace(
0.5, 0.95, round((0.95 - 0.5) / 0.05) + 1).tolist()
if rec_thresholds is not None and not isinstance(rec_thresholds, list):
raise ValueError(
f"Expected argument `rec_thresholds` to either be `None` or a list of floats but got {rec_thresholds}"
)
self.rec_thresholds = rec_thresholds or np.linspace(
0.0, 1.00, round(1.00 / 0.01) + 1).tolist()
if max_detection_thresholds is not None and not isinstance(max_detection_thresholds, list):
raise ValueError(
f"Expected argument `max_detection_thresholds` to either be `None` or a list of ints"
f" but got {max_detection_thresholds}"
)
max_det_thr = np.sort(np.array(
max_detection_thresholds or [100], dtype=np.uint))
self.max_detection_thresholds = max_det_thr.tolist()
# check area ranges
if area_ranges is not None:
if not isinstance(area_ranges, list):
raise ValueError(
f"Expected argument `area_ranges` to either be `None` or a list of lists but got {area_ranges}"
)
for area_range in area_ranges:
if not isinstance(area_range, list) or len(area_range) != 2:
raise ValueError(
f"Expected argument `area_ranges` to be a list of lists of length 2 but got {area_ranges}"
)
self.area_ranges = area_ranges if area_ranges is not None else [
[0**2, 1e5**2]]
if area_ranges_labels is not None:
if area_ranges is None:
raise ValueError(
"Expected argument `area_ranges_labels` to be `None` if `area_ranges` is not provided"
)
if not isinstance(area_ranges_labels, list):
raise ValueError(
f"Expected argument `area_ranges_labels` to either be `None` or a list of strings"
f" but got {area_ranges_labels}"
)
if len(area_ranges_labels) != len(area_ranges):
raise ValueError(
f"Expected argument `area_ranges_labels` to be a list of length {len(area_ranges)}"
f" but got {area_ranges_labels}"
)
self.area_ranges_labels = area_ranges_labels if area_ranges_labels is not None else [
"all"]
# if not isinstance(class_metrics, bool):
# raise ValueError(
# "Expected argument `class_metrics` to be a boolean")
# self.class_metrics = class_metrics
if not isinstance(class_agnostic, bool):
raise ValueError(
"Expected argument `class_agnostic` to be a boolean")
self.class_agnostic = class_agnostic
if not isinstance(debug, bool):
raise ValueError("Expected argument `debug` to be a boolean")
self.debug = debug
self.detections = []
self.detection_scores = []
self.detection_labels = []
self.groundtruths = []
self.groundtruth_labels = []
self.groundtruth_crowds = []
self.groundtruth_area = []
# self.add_state("detections", default=[], dist_reduce_fx=None)
# self.add_state("detection_scores", default=[], dist_reduce_fx=None)
# self.add_state("detection_labels", default=[], dist_reduce_fx=None)
# self.add_state("groundtruths", default=[], dist_reduce_fx=None)
# self.add_state("groundtruth_labels", default=[], dist_reduce_fx=None)
# self.add_state("groundtruth_crowds", default=[], dist_reduce_fx=None)
# self.add_state("groundtruth_area", default=[], dist_reduce_fx=None)
def update(self, preds: List[Dict[str, np.ndarray]], target: List[Dict[str, np.ndarray]]) -> None:
"""Update metric state.
Raises:
ValueError:
If ``preds`` is not of type (:class:`~List[Dict[str, np.ndarray]]`)
ValueError:
If ``target`` is not of type ``List[Dict[str, np.ndarray]]``
ValueError:
If ``preds`` and ``target`` are not of the same length
ValueError:
If any of ``preds.boxes``, ``preds.scores`` and ``preds.labels`` are not of the same length
ValueError:
If any of ``target.boxes`` and ``target.labels`` are not of the same length
ValueError:
If any box is not type float and of length 4
ValueError:
If any class is not type int and of length 1
ValueError:
If any score is not type float and of length 1
"""
_input_validator(preds, target, iou_type=self.iou_type)
for item in preds:
detections = self._get_safe_item_values(item)
self.detections.append(detections)
self.detection_labels.append(item["labels"])
self.detection_scores.append(item["scores"])
for item in target:
groundtruths = self._get_safe_item_values(item)
self.groundtruths.append(groundtruths)
self.groundtruth_labels.append(item["labels"])
self.groundtruth_crowds.append(
item.get("iscrowd", np.zeros_like(item["labels"])))
self.groundtruth_area.append(
item.get("area", np.zeros_like(item["labels"])))
def compute(self) -> dict:
"""Computes the metric."""
coco_target, coco_preds = COCO(), COCO()
coco_target.dataset = self._get_coco_format(
self.groundtruths, self.groundtruth_labels, crowds=self.groundtruth_crowds, area=self.groundtruth_area
)
coco_preds.dataset = self._get_coco_format(
self.detections, self.detection_labels, scores=self.detection_scores)
with contextlib.redirect_stdout(io.StringIO()) as f:
coco_target.createIndex()
coco_preds.createIndex()
coco_eval = COCOeval(coco_target, coco_preds,
iouType=self.iou_type)
coco_eval.params.iouThrs = np.array(
self.iou_thresholds, dtype=np.float64)
coco_eval.params.recThrs = np.array(
self.rec_thresholds, dtype=np.float64)
coco_eval.params.maxDets = self.max_detection_thresholds
coco_eval.params.areaRng = self.area_ranges
coco_eval.params.areaRngLbl = self.area_ranges_labels
coco_eval.params.useCats = 0 if self.class_agnostic else 1
coco_eval.evaluate()
coco_eval.accumulate()
if self.debug:
print(f.getvalue())
metrics = coco_eval.summarize()
return metrics
@staticmethod
def coco_to_np(
coco_preds: str,
coco_target: str,
iou_type: Literal["bbox", "segm"] = "bbox",
) -> Tuple[List[Dict[str, np.ndarray]], List[Dict[str, np.ndarray]]]:
"""Utility function for converting .json coco format files to the input format of this metric.
The function accepts a file for the predictions and a file for the target in coco format and converts them to
a list of dictionaries containing the boxes, labels and scores in the input format of this metric.
Args:
coco_preds: Path to the json file containing the predictions in coco format
coco_target: Path to the json file containing the targets in coco format
iou_type: Type of input, either `bbox` for bounding boxes or `segm` for segmentation masks
Returns:
preds: List of dictionaries containing the predictions in the input format of this metric
target: List of dictionaries containing the targets in the input format of this metric
Example:
>>> # File formats are defined at https://cocodataset.org/#format-data
>>> # Example files can be found at
>>> # https://github.com/cocodataset/cocoapi/tree/master/results
>>> from torchmetrics.detection import MeanAveragePrecision
>>> preds, target = MeanAveragePrecision.coco_to_tm(
... "instances_val2014_fakebbox100_results.json.json",
... "val2014_fake_eval_res.txt.json"
... iou_type="bbox"
... ) # doctest: +SKIP
"""
with contextlib.redirect_stdout(io.StringIO()):
gt = COCO(coco_target)
dt = gt.loadRes(coco_preds)
gt_dataset = gt.dataset["annotations"]
dt_dataset = dt.dataset["annotations"]
target = {}
for t in gt_dataset:
if t["image_id"] not in target:
target[t["image_id"]] = {
"boxes" if iou_type == "bbox" else "masks": [],
"labels": [],
"iscrowd": [],
"area": [],
}
if iou_type == "bbox":
target[t["image_id"]]["boxes"].append(t["bbox"])
else:
target[t["image_id"]]["masks"].append(gt.annToMask(t))
target[t["image_id"]]["labels"].append(t["category_id"])
target[t["image_id"]]["iscrowd"].append(t["iscrowd"])
target[t["image_id"]]["area"].append(t["area"])
preds = {}
for p in dt_dataset:
if p["image_id"] not in preds:
preds[p["image_id"]] = {
"boxes" if iou_type == "bbox" else "masks": [], "scores": [], "labels": []}
if iou_type == "bbox":
preds[p["image_id"]]["boxes"].append(p["bbox"])
else:
preds[p["image_id"]]["masks"].append(gt.annToMask(p))
preds[p["image_id"]]["scores"].append(p["score"])
preds[p["image_id"]]["labels"].append(p["category_id"])
for k in target: # add empty predictions for images without predictions
if k not in preds:
preds[k] = {"boxes" if iou_type ==
"bbox" else "masks": [], "scores": [], "labels": []}
batched_preds, batched_target = [], []
for key in target:
name = "boxes" if iou_type == "bbox" else "masks"
batched_preds.append(
{
name: np.array(
np.array(preds[key]["boxes"]), dtype=np.float32)
if iou_type == "bbox"
else np.array(np.array(preds[key]["masks"]), dtype=np.uint8),
"scores": np.array(preds[key]["scores"], dtype=np.float32),
"labels": np.array(preds[key]["labels"], dtype=np.int32),
}
)
batched_target.append(
{
name: np.array(
target[key]["boxes"], dtype=np.float32)
if iou_type == "bbox"
else np.array(np.array(target[key]["masks"]), dtype=np.uint8),
"labels": np.array(target[key]["labels"], dtype=np.int32),
"iscrowd": np.array(target[key]["iscrowd"], dtype=np.int32),
"area": np.array(target[key]["area"], dtype=np.float32),
}
)
return batched_preds, batched_target
def np_to_coco(self, name: str = "np_map_input") -> None:
"""Utility function for converting the input for this metric to coco format and saving it to a json file.
This function should be used after calling `.update(...)` or `.forward(...)` on all data that should be written
to the file, as the input is then internally cached. The function then converts to information to coco format
a writes it to json files.
Args:
name: Name of the output file, which will be appended with "_preds.json" and "_target.json"
Example:
>>> import numpy as np
>>> from metrics.detection import MeanAveragePrecision
>>> preds = [
... dict(
... boxes=np.array([[258.0, 41.0, 606.0, 285.0]]),
... scores=np.array([0.536]),
... labels=np.array([0]),
... )
... ]
>>> target = [
... dict(
... boxes=np.array([[214.0, 41.0, 562.0, 285.0]]),
... labels=np.array([0]),
... )
... ]
>>> metric = PrecisionRecallF1Support()
>>> metric.update(preds, target)
>>> metric.np_to_coco("np_map_input") # doctest: +SKIP
"""
target_dataset = self._get_coco_format(
self.groundtruths, self.groundtruth_labels)
preds_dataset = self._get_coco_format(
self.detections, self.detection_labels, self.detection_scores)
preds_json = json.dumps(preds_dataset["annotations"], indent=4)
target_json = json.dumps(target_dataset, indent=4)
with open(f"{name}_preds.json", "w") as f:
f.write(preds_json)
with open(f"{name}_target.json", "w") as f:
f.write(target_json)
def _get_safe_item_values(self, item: Dict[str, Any]) -> Union[np.ndarray, Tuple]:
"""Convert and return the boxes or masks from the item depending on the iou_type.
Args:
item: input dictionary containing the boxes or masks
Returns:
boxes or masks depending on the iou_type
"""
if self.iou_type == "bbox":
boxes = _fix_empty_arrays(item["boxes"])
if boxes.size > 0:
boxes = box_convert(
boxes, in_fmt=self.box_format, out_fmt="xywh")
return boxes
if self.iou_type == "segm":
masks = []
for i in item["masks"]:
rle = mask_utils.encode(np.asfortranarray(i))
masks.append((tuple(rle["size"]), rle["counts"]))
return tuple(masks)
raise Exception(f"IOU type {self.iou_type} is not supported")
def _get_classes(self) -> List:
"""Return a list of unique classes found in ground truth and detection data."""
all_labels = np.concatenate(
self.detection_labels + self.groundtruth_labels)
unique_classes = np.unique(all_labels)
return unique_classes.tolist()
def _get_coco_format(
self,
boxes: List[np.ndarray],
labels: List[np.ndarray],
scores: Optional[List[np.ndarray]] = None,
crowds: Optional[List[np.ndarray]] = None,
area: Optional[List[np.ndarray]] = None,
) -> Dict:
"""Transforms and returns all cached targets or predictions in COCO format.
Format is defined at https://cocodataset.org/#format-data
"""
images = []
annotations = []
annotation_id = 1 # has to start with 1, otherwise COCOEval results are wrong
for image_id, (image_boxes, image_labels) in enumerate(zip(boxes, labels)):
if self.iou_type == "segm" and len(image_boxes) == 0:
continue
if self.iou_type == "bbox":
image_boxes = image_boxes.tolist()
image_labels = image_labels.tolist()
images.append({"id": image_id})
if self.iou_type == "segm":
images[-1]["height"], images[-1]["width"] = image_boxes[0][0][0], image_boxes[0][0][1]
for k, (image_box, image_label) in enumerate(zip(image_boxes, image_labels)):
if self.iou_type == "bbox" and len(image_box) != 4:
raise ValueError(
f"Invalid input box of sample {image_id}, element {k} (expected 4 values, got {len(image_box)})"
)
if not isinstance(image_label, int):
raise ValueError(
f"Invalid input class of sample {image_id}, element {k}"
f" (expected value of type integer, got type {type(image_label)})"
)
stat = image_box if self.iou_type == "bbox" else {
"size": image_box[0], "counts": image_box[1]}
if area is not None and area[image_id][k].tolist() > 0:
area_stat = area[image_id][k].tolist()
else:
area_stat = image_box[2] * \
image_box[3] if self.iou_type == "bbox" else mask_utils.area(
stat)
annotation = {
"id": annotation_id,
"image_id": image_id,
"bbox" if self.iou_type == "bbox" else "segmentation": stat,
"area": area_stat,
"category_id": image_label,
"iscrowd": crowds[image_id][k].tolist() if crowds is not None else 0,
}
if scores is not None:
score = scores[image_id][k].tolist()
if not isinstance(score, float):
raise ValueError(
f"Invalid input score of sample {image_id}, element {k}"
f" (expected value of type float, got type {type(score)})"
)
annotation["score"] = score
annotations.append(annotation)
annotation_id += 1
classes = [{"id": i, "name": str(i)} for i in self._get_classes()]
return {"images": images, "annotations": annotations, "categories": classes}
|