Spaces:
Running
Running
Victoria Oberascher
commited on
Commit
·
003e48f
1
Parent(s):
35fe85d
add function to generate confidence curves
Browse files- det-metrics.py +56 -5
- requirements.txt +2 -1
det-metrics.py
CHANGED
@@ -13,13 +13,12 @@
|
|
13 |
# limitations under the License.
|
14 |
"""TODO: Add a description here."""
|
15 |
|
16 |
-
from typing import List,
|
17 |
-
from deprecated import deprecated
|
18 |
|
19 |
-
import evaluate
|
20 |
import datasets
|
|
|
21 |
import numpy as np
|
22 |
-
|
23 |
from seametrics.detection import PrecisionRecallF1Support
|
24 |
from seametrics.payload import Payload
|
25 |
|
@@ -200,7 +199,7 @@ class DetectionMetric(evaluate.Metric):
|
|
200 |
|
201 |
def _compute(self, *, predictions, references, **kwargs):
|
202 |
"""Called within the evaluate.Metric.compute() method"""
|
203 |
-
return self.coco_metric.compute()
|
204 |
|
205 |
def add_payload(self, payload: Payload, model_name: str = None):
|
206 |
"""Converts the payload to the format expected by the metric"""
|
@@ -236,3 +235,55 @@ class DetectionMetric(evaluate.Metric):
|
|
236 |
elif isinstance(v, list):
|
237 |
d[k] = np.array(v)
|
238 |
return d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# limitations under the License.
|
14 |
"""TODO: Add a description here."""
|
15 |
|
16 |
+
from typing import List, Literal, Tuple
|
|
|
17 |
|
|
|
18 |
import datasets
|
19 |
+
import evaluate
|
20 |
import numpy as np
|
21 |
+
from deprecated import deprecated
|
22 |
from seametrics.detection import PrecisionRecallF1Support
|
23 |
from seametrics.payload import Payload
|
24 |
|
|
|
199 |
|
200 |
def _compute(self, *, predictions, references, **kwargs):
|
201 |
"""Called within the evaluate.Metric.compute() method"""
|
202 |
+
return self.coco_metric.compute()
|
203 |
|
204 |
def add_payload(self, payload: Payload, model_name: str = None):
|
205 |
"""Converts the payload to the format expected by the metric"""
|
|
|
235 |
elif isinstance(v, list):
|
236 |
d[k] = np.array(v)
|
237 |
return d
|
238 |
+
|
239 |
+
def compute_for_multiple_models(self, payload):
|
240 |
+
results = {}
|
241 |
+
for model_name in payload.models:
|
242 |
+
self.add_payload(payload, model_name)
|
243 |
+
results[model_name] = self._compute()
|
244 |
+
|
245 |
+
return results
|
246 |
+
|
247 |
+
|
248 |
+
def generate_confidence_curves(self, results, models, confidence_config = {"T":0,
|
249 |
+
"R":0,
|
250 |
+
"K":0,
|
251 |
+
"A":0,
|
252 |
+
"M":0}):
|
253 |
+
|
254 |
+
import plotly.graph_objects as go
|
255 |
+
from seametrics.detection.utils import get_confidence_metric_vals
|
256 |
+
|
257 |
+
# Create traces
|
258 |
+
fig = go.Figure()
|
259 |
+
metrics = ['precision', 'recall', 'f1']
|
260 |
+
for model in models:
|
261 |
+
plot_data = get_confidence_metric_vals(
|
262 |
+
cocoeval=results[model['name']]['eval'],
|
263 |
+
T=confidence_config['T'],
|
264 |
+
R=confidence_config['R'],
|
265 |
+
K=confidence_config['K'],
|
266 |
+
A=confidence_config['A'],
|
267 |
+
M=confidence_config['M']
|
268 |
+
)
|
269 |
+
|
270 |
+
for metric in metrics:
|
271 |
+
fig.add_trace(
|
272 |
+
go.Scatter(
|
273 |
+
x=plot_data['conf'],
|
274 |
+
y=plot_data[metric],
|
275 |
+
mode='lines',
|
276 |
+
name=f"{model['name'].split('_')[0]} {metric}",
|
277 |
+
line=dict(dash=None if metric == 'f1' else 'dash'),
|
278 |
+
)
|
279 |
+
)
|
280 |
+
|
281 |
+
fig.update_layout(
|
282 |
+
title="Metric vs Confidence",
|
283 |
+
hovermode='x unified',
|
284 |
+
xaxis_title="Confidence",
|
285 |
+
yaxis_title="Metric value")
|
286 |
+
fig.show()
|
287 |
+
|
288 |
+
return fig
|
289 |
+
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
git+https://github.com/huggingface/evaluate@main
|
2 |
git+https://github.com/SEA-AI/seametrics@develop
|
3 |
-
fiftyone
|
|
|
|
1 |
git+https://github.com/huggingface/evaluate@main
|
2 |
git+https://github.com/SEA-AI/seametrics@develop
|
3 |
+
fiftyone
|
4 |
+
plotly
|