Spaces:
Sleeping
Sleeping
kevinconka
commited on
Commit
·
84f01ec
1
Parent(s):
c59668c
proper use of "add" and "compute" + "add_from_payload"
Browse files- det-metrics.py +84 -62
det-metrics.py
CHANGED
@@ -13,15 +13,15 @@
|
|
13 |
# limitations under the License.
|
14 |
"""TODO: Add a description here."""
|
15 |
|
16 |
-
from typing import List, Tuple,
|
17 |
|
18 |
import evaluate
|
19 |
import datasets
|
20 |
import numpy as np
|
21 |
|
22 |
from seametrics.detection import PrecisionRecallF1Support
|
23 |
-
from seametrics.
|
24 |
-
from seametrics.
|
25 |
|
26 |
_CITATION = """\
|
27 |
@InProceedings{coco:2020,
|
@@ -53,13 +53,16 @@ It is based on a modified version of the commonly used COCO-evaluation metrics.
|
|
53 |
_KWARGS_DESCRIPTION = """
|
54 |
Calculates object detection metrics given predicted and ground truth bounding boxes for a single image.
|
55 |
Args:
|
56 |
-
predictions: list of predictions
|
57 |
-
be a
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
Returns:
|
64 |
dict containing dicts for each specified area range with following items:
|
65 |
'range': specified area with [max_px_area, max_px_area]
|
@@ -84,11 +87,11 @@ Returns:
|
|
84 |
'nImgs': number of images considered in evaluation
|
85 |
Examples:
|
86 |
>>> import evaluate
|
87 |
-
>>> from seametrics.
|
88 |
-
>>> payload =
|
89 |
-
>>> for model in payload
|
90 |
-
>>> module = evaluate.load("
|
91 |
-
>>> module.
|
92 |
>>> result = module.compute()
|
93 |
>>> print(result)
|
94 |
{'all': {
|
@@ -113,27 +116,29 @@ Examples:
|
|
113 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
114 |
class DetectionMetric(evaluate.Metric):
|
115 |
def __init__(
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
super().__init__(**kwargs)
|
125 |
area_ranges = [v for _, v in area_ranges_tuples]
|
126 |
area_ranges_labels = [k for k, _ in area_ranges_tuples]
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
iou_thresholds=
|
130 |
area_ranges=area_ranges,
|
131 |
area_ranges_labels=area_ranges_labels,
|
132 |
class_agnostic=class_agnostic,
|
133 |
iou_type=iou_type,
|
134 |
-
box_format=bbox_format
|
135 |
)
|
136 |
-
self.coco_metric = PrecisionRecallF1Support(**metric_params)
|
137 |
|
138 |
def _info(self):
|
139 |
return evaluate.MetricInfo(
|
@@ -145,46 +150,63 @@ class DetectionMetric(evaluate.Metric):
|
|
145 |
# This defines the format of each prediction and reference
|
146 |
features=datasets.Features(
|
147 |
{
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
}
|
151 |
),
|
152 |
# Additional links to the codebase or references
|
153 |
-
codebase_urls=[
|
154 |
-
|
|
|
|
|
155 |
)
|
156 |
-
|
157 |
-
def
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
format should be as returned by function `fo_to_payload()` in seametrics library
|
167 |
-
model (str): should be one out of values given in data["models"]
|
168 |
-
if not defined, defaults to data["models"][0], as only one model can be evaluated a time.
|
169 |
-
"""
|
170 |
-
# populate two empty lists in format suitable for hugging face metric
|
171 |
-
# nothing is computed based on them but prevents huggingface error
|
172 |
-
|
173 |
-
|
174 |
-
self, predictions,references = _add_batch(self, data, model)
|
175 |
-
|
176 |
-
# prevents hugging face error, doesn't do a lot
|
177 |
-
super(evaluate.Metric, self).add_batch(
|
178 |
-
predictions=predictions,
|
179 |
-
references=references
|
180 |
)
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
def _compute(
|
184 |
-
self,
|
185 |
-
predictions,
|
186 |
-
references
|
187 |
-
):
|
188 |
"""Returns the scores"""
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# limitations under the License.
|
14 |
"""TODO: Add a description here."""
|
15 |
|
16 |
+
from typing import List, Tuple, Literal
|
17 |
|
18 |
import evaluate
|
19 |
import datasets
|
20 |
import numpy as np
|
21 |
|
22 |
from seametrics.detection import PrecisionRecallF1Support
|
23 |
+
from seametrics.detection.utils import payload_to_det_metric
|
24 |
+
from seametrics.payload import Payload
|
25 |
|
26 |
_CITATION = """\
|
27 |
@InProceedings{coco:2020,
|
|
|
53 |
_KWARGS_DESCRIPTION = """
|
54 |
Calculates object detection metrics given predicted and ground truth bounding boxes for a single image.
|
55 |
Args:
|
56 |
+
predictions: list of predictions for each image. Each prediction should
|
57 |
+
be a dict containing the following
|
58 |
+
- 'boxes': list of bounding boxes, xywh in absolute pixel values
|
59 |
+
- 'labels': list of labels for each bounding box
|
60 |
+
- 'scores': list of scores for each bounding box
|
61 |
+
references: list of ground truth annotations for each image. Each reference should
|
62 |
+
be a dict containing the following
|
63 |
+
- 'boxes': list of bounding boxes, xywh in absolute pixel values
|
64 |
+
- 'labels': list of labels for each bounding box
|
65 |
+
- 'area': list of areas for each bounding box
|
66 |
Returns:
|
67 |
dict containing dicts for each specified area range with following items:
|
68 |
'range': specified area with [max_px_area, max_px_area]
|
|
|
87 |
'nImgs': number of images considered in evaluation
|
88 |
Examples:
|
89 |
>>> import evaluate
|
90 |
+
>>> from seametrics.payload import PayloadProcessor
|
91 |
+
>>> payload = PayloadProcessor(...).payload
|
92 |
+
>>> for model in payload.models:
|
93 |
+
>>> module = evaluate.load("SEA-AI/det-metrics", ...)
|
94 |
+
>>> module.add_from_payload(payload)
|
95 |
>>> result = module.compute()
|
96 |
>>> print(result)
|
97 |
{'all': {
|
|
|
116 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
117 |
class DetectionMetric(evaluate.Metric):
|
118 |
def __init__(
|
119 |
+
self,
|
120 |
+
area_ranges_tuples: List[Tuple[str, List[int]]] = [("all", [0, 1e5**2])],
|
121 |
+
iou_threshold: List[float] = [1e-10],
|
122 |
+
class_agnostic: bool = True,
|
123 |
+
bbox_format: str = "xywh",
|
124 |
+
iou_type: Literal["bbox", "segm"] = "bbox",
|
125 |
+
**kwargs
|
126 |
+
):
|
127 |
super().__init__(**kwargs)
|
128 |
area_ranges = [v for _, v in area_ranges_tuples]
|
129 |
area_ranges_labels = [k for k, _ in area_ranges_tuples]
|
130 |
+
iou_threshold = (
|
131 |
+
[iou_threshold] if not isinstance(iou_threshold, list) else iou_threshold
|
132 |
+
)
|
133 |
|
134 |
+
self.coco_metric = PrecisionRecallF1Support(
|
135 |
+
iou_thresholds=iou_threshold,
|
136 |
area_ranges=area_ranges,
|
137 |
area_ranges_labels=area_ranges_labels,
|
138 |
class_agnostic=class_agnostic,
|
139 |
iou_type=iou_type,
|
140 |
+
box_format=bbox_format,
|
141 |
)
|
|
|
142 |
|
143 |
def _info(self):
|
144 |
return evaluate.MetricInfo(
|
|
|
150 |
# This defines the format of each prediction and reference
|
151 |
features=datasets.Features(
|
152 |
{
|
153 |
+
"predictions": [
|
154 |
+
datasets.Features(
|
155 |
+
{
|
156 |
+
"boxes": datasets.Sequence(
|
157 |
+
datasets.Sequence(datasets.Value("float"))
|
158 |
+
),
|
159 |
+
"labels": datasets.Sequence(datasets.Value("int64")),
|
160 |
+
"scores": datasets.Sequence(datasets.Value("float")),
|
161 |
+
}
|
162 |
+
)
|
163 |
+
],
|
164 |
+
"references": [
|
165 |
+
datasets.Features(
|
166 |
+
{
|
167 |
+
"boxes": datasets.Sequence(
|
168 |
+
datasets.Sequence(datasets.Value("float"))
|
169 |
+
),
|
170 |
+
"labels": datasets.Sequence(datasets.Value("int64")),
|
171 |
+
"area": datasets.Sequence(datasets.Value("float")),
|
172 |
+
}
|
173 |
+
)
|
174 |
+
],
|
175 |
}
|
176 |
),
|
177 |
# Additional links to the codebase or references
|
178 |
+
codebase_urls=[
|
179 |
+
"https://github.com/SEA-AI/seametrics/tree/main",
|
180 |
+
"https://lightning.ai/docs/torchmetrics/stable/detection/mean_average_precision.html",
|
181 |
+
],
|
182 |
)
|
183 |
+
|
184 |
+
def add(self, *, prediction, reference, **kwargs):
|
185 |
+
"""Adds a batch of predictions and references to the metric"""
|
186 |
+
self.coco_metric.update(prediction, reference)
|
187 |
+
|
188 |
+
# does not impact the metric, but is required for the interface x_x
|
189 |
+
super(evaluate.Metric, self).add(
|
190 |
+
prediction=[self._np_to_lists(p) for p in prediction],
|
191 |
+
references=[self._np_to_lists(r) for r in reference],
|
192 |
+
**kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
)
|
194 |
|
195 |
+
def _np_to_lists(self, d):
|
196 |
+
"""datasets does not support numpy arrays for type checking"""
|
197 |
+
for k, v in d.items():
|
198 |
+
if isinstance(v, dict):
|
199 |
+
self._np_to_lists(v)
|
200 |
+
elif isinstance(v, np.ndarray):
|
201 |
+
d[k] = v.tolist()
|
202 |
+
return d
|
203 |
|
204 |
+
def _compute(self, *, predictions, references, **kwargs):
|
|
|
|
|
|
|
|
|
205 |
"""Returns the scores"""
|
206 |
+
return self.coco_metric.compute()["metrics"]
|
207 |
+
|
208 |
+
def add_from_payload(self, payload: Payload, model_name: str = None):
|
209 |
+
"""Converts the payload to the format expected by the metric"""
|
210 |
+
predictions, references = payload_to_det_metric(payload, model_name)
|
211 |
+
self.add(prediction=predictions, reference=references)
|
212 |
+
return self
|