Spaces:
Running
Running
kevinconka
commited on
Commit
•
e599283
1
Parent(s):
62d54d5
added seametrics as dependency
Browse files- det-metrics.py +1 -1
- modified_coco/cocoeval.py +0 -693
- modified_coco/pr_rec_f1.py +0 -620
- modified_coco/utils.py +0 -220
det-metrics.py
CHANGED
@@ -19,7 +19,7 @@ import evaluate
|
|
19 |
import datasets
|
20 |
import numpy as np
|
21 |
|
22 |
-
from
|
23 |
|
24 |
|
25 |
_CITATION = """\
|
|
|
19 |
import datasets
|
20 |
import numpy as np
|
21 |
|
22 |
+
from seametrics.detection import PrecisionRecallF1Support
|
23 |
|
24 |
|
25 |
_CITATION = """\
|
modified_coco/cocoeval.py
DELETED
@@ -1,693 +0,0 @@
|
|
1 |
-
__author__ = 'tsungyi, [email protected]'
|
2 |
-
|
3 |
-
# This is a modified version of the original cocoeval.py
|
4 |
-
# In this version we are able to return the TP, FP, and FN values
|
5 |
-
# along with the other default metrics.
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import datetime
|
9 |
-
import time
|
10 |
-
from collections import defaultdict
|
11 |
-
from pycocotools import mask as maskUtils
|
12 |
-
import copy
|
13 |
-
|
14 |
-
class COCOeval:
|
15 |
-
# Interface for evaluating detection on the Microsoft COCO dataset.
|
16 |
-
#
|
17 |
-
# The usage for CocoEval is as follows:
|
18 |
-
# cocoGt=..., cocoDt=... # load dataset and results
|
19 |
-
# E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object
|
20 |
-
# E.params.recThrs = ...; # set parameters as desired
|
21 |
-
# E.evaluate(); # run per image evaluation
|
22 |
-
# E.accumulate(); # accumulate per image results
|
23 |
-
# E.summarize(); # display summary metrics of results
|
24 |
-
# For example usage see evalDemo.m and http://mscoco.org/.
|
25 |
-
#
|
26 |
-
# The evaluation parameters are as follows (defaults in brackets):
|
27 |
-
# imgIds - [all] N img ids to use for evaluation
|
28 |
-
# catIds - [all] K cat ids to use for evaluation
|
29 |
-
# iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation
|
30 |
-
# recThrs - [0:.01:1] R=101 recall thresholds for evaluation
|
31 |
-
# areaRng - [...] A=4 object area ranges for evaluation
|
32 |
-
# maxDets - [1 10 100] M=3 thresholds on max detections per image
|
33 |
-
# iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints'
|
34 |
-
# iouType replaced the now DEPRECATED useSegm parameter.
|
35 |
-
# useCats - [1] if true use category labels for evaluation
|
36 |
-
# Note: if useCats=0 category labels are ignored as in proposal scoring.
|
37 |
-
# Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.
|
38 |
-
#
|
39 |
-
# evaluate(): evaluates detections on every image and every category and
|
40 |
-
# concats the results into the "evalImgs" with fields:
|
41 |
-
# dtIds - [1xD] id for each of the D detections (dt)
|
42 |
-
# gtIds - [1xG] id for each of the G ground truths (gt)
|
43 |
-
# dtMatches - [TxD] matching gt id at each IoU or 0
|
44 |
-
# gtMatches - [TxG] matching dt id at each IoU or 0
|
45 |
-
# dtScores - [1xD] confidence of each dt
|
46 |
-
# gtIgnore - [1xG] ignore flag for each gt
|
47 |
-
# dtIgnore - [TxD] ignore flag for each dt at each IoU
|
48 |
-
#
|
49 |
-
# accumulate(): accumulates the per-image, per-category evaluation
|
50 |
-
# results in "evalImgs" into the dictionary "eval" with fields:
|
51 |
-
# params - parameters used for evaluation
|
52 |
-
# date - date evaluation was performed
|
53 |
-
# counts - [T,R,K,A,M] parameter dimensions (see above)
|
54 |
-
# precision - [TxRxKxAxM] precision for every evaluation setting
|
55 |
-
# recall - [TxKxAxM] max recall for every evaluation setting
|
56 |
-
# TP - [TxKxAxM] number of true positives for every eval setting [NEW]
|
57 |
-
# FP - [TxKxAxM] number of false positives for every eval setting [NEW]
|
58 |
-
# FN - [TxKxAxM] number of false negatives for every eval setting [NEW]
|
59 |
-
# Note: precision and recall==-1 for settings with no gt objects.
|
60 |
-
#
|
61 |
-
# See also coco, mask, pycocoDemo, pycocoEvalDemo
|
62 |
-
#
|
63 |
-
# Microsoft COCO Toolbox. version 2.0
|
64 |
-
# Data, paper, and tutorials available at: http://mscoco.org/
|
65 |
-
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
|
66 |
-
# Licensed under the Simplified BSD License [see coco/license.txt]
|
67 |
-
def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'):
|
68 |
-
'''
|
69 |
-
Initialize CocoEval using coco APIs for gt and dt
|
70 |
-
:param cocoGt: coco object with ground truth annotations
|
71 |
-
:param cocoDt: coco object with detection results
|
72 |
-
:return: None
|
73 |
-
'''
|
74 |
-
if not iouType:
|
75 |
-
print('iouType not specified. use default iouType segm')
|
76 |
-
self.cocoGt = cocoGt # ground truth COCO API
|
77 |
-
self.cocoDt = cocoDt # detections COCO API
|
78 |
-
self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements
|
79 |
-
self.eval = {} # accumulated evaluation results
|
80 |
-
self._gts = defaultdict(list) # gt for evaluation
|
81 |
-
self._dts = defaultdict(list) # dt for evaluation
|
82 |
-
self.params = Params(iouType=iouType) # parameters
|
83 |
-
self._paramsEval = {} # parameters for evaluation
|
84 |
-
self.stats = [] # result summarization
|
85 |
-
self.ious = {} # ious between all gts and dts
|
86 |
-
if not cocoGt is None:
|
87 |
-
self.params.imgIds = sorted(cocoGt.getImgIds())
|
88 |
-
self.params.catIds = sorted(cocoGt.getCatIds())
|
89 |
-
|
90 |
-
|
91 |
-
def _prepare(self):
|
92 |
-
'''
|
93 |
-
Prepare ._gts and ._dts for evaluation based on params
|
94 |
-
:return: None
|
95 |
-
'''
|
96 |
-
def _toMask(anns, coco):
|
97 |
-
# modify ann['segmentation'] by reference
|
98 |
-
for ann in anns:
|
99 |
-
rle = coco.annToRLE(ann)
|
100 |
-
ann['segmentation'] = rle
|
101 |
-
p = self.params
|
102 |
-
if p.useCats:
|
103 |
-
gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
|
104 |
-
dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
|
105 |
-
else:
|
106 |
-
gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
|
107 |
-
dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
|
108 |
-
|
109 |
-
# convert ground truth to mask if iouType == 'segm'
|
110 |
-
if p.iouType == 'segm':
|
111 |
-
_toMask(gts, self.cocoGt)
|
112 |
-
_toMask(dts, self.cocoDt)
|
113 |
-
# set ignore flag
|
114 |
-
for gt in gts:
|
115 |
-
gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0
|
116 |
-
gt['ignore'] = 'iscrowd' in gt and gt['iscrowd']
|
117 |
-
if p.iouType == 'keypoints':
|
118 |
-
gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore']
|
119 |
-
self._gts = defaultdict(list) # gt for evaluation
|
120 |
-
self._dts = defaultdict(list) # dt for evaluation
|
121 |
-
for gt in gts:
|
122 |
-
self._gts[gt['image_id'], gt['category_id']].append(gt)
|
123 |
-
for dt in dts:
|
124 |
-
self._dts[dt['image_id'], dt['category_id']].append(dt)
|
125 |
-
self.evalImgs = defaultdict(list) # per-image per-category evaluation results
|
126 |
-
self.eval = {} # accumulated evaluation results
|
127 |
-
|
128 |
-
def evaluate(self):
|
129 |
-
'''
|
130 |
-
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
|
131 |
-
:return: None
|
132 |
-
'''
|
133 |
-
tic = time.time()
|
134 |
-
print('Running per image evaluation...')
|
135 |
-
p = self.params
|
136 |
-
# add backward compatibility if useSegm is specified in params
|
137 |
-
if not p.useSegm is None:
|
138 |
-
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
|
139 |
-
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
|
140 |
-
print('Evaluate annotation type *{}*'.format(p.iouType))
|
141 |
-
p.imgIds = list(np.unique(p.imgIds))
|
142 |
-
if p.useCats:
|
143 |
-
p.catIds = list(np.unique(p.catIds))
|
144 |
-
p.maxDets = sorted(p.maxDets)
|
145 |
-
self.params=p
|
146 |
-
|
147 |
-
self._prepare()
|
148 |
-
# loop through images, area range, max detection number
|
149 |
-
catIds = p.catIds if p.useCats else [-1]
|
150 |
-
|
151 |
-
if p.iouType == 'segm' or p.iouType == 'bbox':
|
152 |
-
computeIoU = self.computeIoU
|
153 |
-
elif p.iouType == 'keypoints':
|
154 |
-
computeIoU = self.computeOks
|
155 |
-
self.ious = {(imgId, catId): computeIoU(imgId, catId) \
|
156 |
-
for imgId in p.imgIds
|
157 |
-
for catId in catIds}
|
158 |
-
|
159 |
-
evaluateImg = self.evaluateImg
|
160 |
-
maxDet = p.maxDets[-1]
|
161 |
-
self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet)
|
162 |
-
for catId in catIds
|
163 |
-
for areaRng in p.areaRng
|
164 |
-
for imgId in p.imgIds
|
165 |
-
]
|
166 |
-
self._paramsEval = copy.deepcopy(self.params)
|
167 |
-
toc = time.time()
|
168 |
-
print('DONE (t={:0.2f}s).'.format(toc-tic))
|
169 |
-
|
170 |
-
def computeIoU(self, imgId, catId):
|
171 |
-
p = self.params
|
172 |
-
if p.useCats:
|
173 |
-
gt = self._gts[imgId,catId]
|
174 |
-
dt = self._dts[imgId,catId]
|
175 |
-
else:
|
176 |
-
gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
|
177 |
-
dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
|
178 |
-
if len(gt) == 0 and len(dt) ==0:
|
179 |
-
return []
|
180 |
-
inds = np.argsort([-d['score'] for d in dt], kind='mergesort')
|
181 |
-
dt = [dt[i] for i in inds]
|
182 |
-
if len(dt) > p.maxDets[-1]:
|
183 |
-
dt=dt[0:p.maxDets[-1]]
|
184 |
-
|
185 |
-
if p.iouType == 'segm':
|
186 |
-
g = [g['segmentation'] for g in gt]
|
187 |
-
d = [d['segmentation'] for d in dt]
|
188 |
-
elif p.iouType == 'bbox':
|
189 |
-
g = [g['bbox'] for g in gt]
|
190 |
-
d = [d['bbox'] for d in dt]
|
191 |
-
else:
|
192 |
-
raise Exception('unknown iouType for iou computation')
|
193 |
-
|
194 |
-
# compute iou between each dt and gt region
|
195 |
-
iscrowd = [int(o['iscrowd']) for o in gt]
|
196 |
-
ious = maskUtils.iou(d,g,iscrowd)
|
197 |
-
return ious
|
198 |
-
|
199 |
-
def computeOks(self, imgId, catId):
|
200 |
-
p = self.params
|
201 |
-
# dimention here should be Nxm
|
202 |
-
gts = self._gts[imgId, catId]
|
203 |
-
dts = self._dts[imgId, catId]
|
204 |
-
inds = np.argsort([-d['score'] for d in dts], kind='mergesort')
|
205 |
-
dts = [dts[i] for i in inds]
|
206 |
-
if len(dts) > p.maxDets[-1]:
|
207 |
-
dts = dts[0:p.maxDets[-1]]
|
208 |
-
# if len(gts) == 0 and len(dts) == 0:
|
209 |
-
if len(gts) == 0 or len(dts) == 0:
|
210 |
-
return []
|
211 |
-
ious = np.zeros((len(dts), len(gts)))
|
212 |
-
sigmas = p.kpt_oks_sigmas
|
213 |
-
vars = (sigmas * 2)**2
|
214 |
-
k = len(sigmas)
|
215 |
-
# compute oks between each detection and ground truth object
|
216 |
-
for j, gt in enumerate(gts):
|
217 |
-
# create bounds for ignore regions(double the gt bbox)
|
218 |
-
g = np.array(gt['keypoints'])
|
219 |
-
xg = g[0::3]; yg = g[1::3]; vg = g[2::3]
|
220 |
-
k1 = np.count_nonzero(vg > 0)
|
221 |
-
bb = gt['bbox']
|
222 |
-
x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2
|
223 |
-
y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2
|
224 |
-
for i, dt in enumerate(dts):
|
225 |
-
d = np.array(dt['keypoints'])
|
226 |
-
xd = d[0::3]; yd = d[1::3]
|
227 |
-
if k1>0:
|
228 |
-
# measure the per-keypoint distance if keypoints visible
|
229 |
-
dx = xd - xg
|
230 |
-
dy = yd - yg
|
231 |
-
else:
|
232 |
-
# measure minimum distance to keypoints in (x0,y0) & (x1,y1)
|
233 |
-
z = np.zeros((k))
|
234 |
-
dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0)
|
235 |
-
dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0)
|
236 |
-
e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2
|
237 |
-
if k1 > 0:
|
238 |
-
e=e[vg > 0]
|
239 |
-
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
|
240 |
-
return ious
|
241 |
-
|
242 |
-
def is_bbox1_inside_bbox2(self, bbox1, bbox2):
|
243 |
-
'''
|
244 |
-
Check if bbox1 is inside bbox2. Bbox is in the format [x, y, w, h]
|
245 |
-
Returns:
|
246 |
-
- True if bbox1 is inside bbox2, False otherwise
|
247 |
-
- How much bbox1 is inside bbox2 (number between 0 and 1)
|
248 |
-
'''
|
249 |
-
x1_1, y1_1, w1_1, h1_1 = bbox1
|
250 |
-
x1_2, y1_2, w1_2, h1_2 = bbox2
|
251 |
-
|
252 |
-
# Convert xywh to (x, y, x2, y2) format
|
253 |
-
x2_1, y2_1 = x1_1 + w1_1, y1_1 + h1_1
|
254 |
-
x2_2, y2_2 = x1_2 + w1_2, y1_2 + h1_2
|
255 |
-
|
256 |
-
# Calculate the coordinates of the intersection rectangle
|
257 |
-
x_left, y_top = max(x1_1, x1_2), max(y1_1, y1_2)
|
258 |
-
x_right, y_bottom = min(x2_1, x2_2), min(y2_1, y2_2)
|
259 |
-
print(f"{x_left=}, {x_right=}, {y_top=}, {y_bottom=}")
|
260 |
-
if x_right < x_left or y_bottom < y_top:
|
261 |
-
return False, 0
|
262 |
-
|
263 |
-
intersection_area = (x_right - x_left) * (y_bottom - y_top)
|
264 |
-
print(f"{intersection_area=}")
|
265 |
-
return True, intersection_area / (w1_1 * h1_1)
|
266 |
-
|
267 |
-
def evaluateImg(self, imgId, catId, aRng, maxDet):
|
268 |
-
'''
|
269 |
-
perform evaluation for single category and image
|
270 |
-
:return: dict (single image results)
|
271 |
-
'''
|
272 |
-
p = self.params
|
273 |
-
if p.useCats:
|
274 |
-
gt = self._gts[imgId,catId]
|
275 |
-
dt = self._dts[imgId,catId]
|
276 |
-
else:
|
277 |
-
gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
|
278 |
-
dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
|
279 |
-
if len(gt) == 0 and len(dt) ==0:
|
280 |
-
return None
|
281 |
-
|
282 |
-
for g in gt:
|
283 |
-
if g['ignore'] or (g['area']<aRng[0] or g['area']>aRng[1]):
|
284 |
-
g['_ignore'] = 1
|
285 |
-
else:
|
286 |
-
g['_ignore'] = 0
|
287 |
-
|
288 |
-
# sort dt highest score first, sort gt ignore last
|
289 |
-
gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
|
290 |
-
gt = [gt[i] for i in gtind]
|
291 |
-
dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
|
292 |
-
dt = [dt[i] for i in dtind[0:maxDet]]
|
293 |
-
iscrowd = [int(o['iscrowd']) for o in gt]
|
294 |
-
# load computed ious
|
295 |
-
ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId]
|
296 |
-
|
297 |
-
T = len(p.iouThrs)
|
298 |
-
G = len(gt)
|
299 |
-
D = len(dt)
|
300 |
-
gtm = np.zeros((T,G))
|
301 |
-
dtm = np.zeros((T,D))
|
302 |
-
gtIg = np.array([g['_ignore'] for g in gt])
|
303 |
-
dtIg = np.zeros((T,D))
|
304 |
-
dtDup = np.zeros((T,D))
|
305 |
-
|
306 |
-
if not len(ious)==0:
|
307 |
-
for tind, t in enumerate(p.iouThrs):
|
308 |
-
for dind, d in enumerate(dt):
|
309 |
-
# information about best match so far (m=-1 -> unmatched)
|
310 |
-
iou = min([t,1-1e-10])
|
311 |
-
m = -1
|
312 |
-
for gind, g in enumerate(gt):
|
313 |
-
# if this gt already matched, iou>iouThr, and not a crowd
|
314 |
-
# store detection as duplicate
|
315 |
-
if gtm[tind,gind]>0 and ious[dind,gind]>t and not iscrowd[gind]:
|
316 |
-
dtDup[tind, dind] = d['id']
|
317 |
-
# if this gt already matched, and not a crowd, continue
|
318 |
-
if gtm[tind,gind]>0 and not iscrowd[gind]:
|
319 |
-
continue
|
320 |
-
# if dt matched to reg gt, and on ignore gt, stop
|
321 |
-
if m > -1 and gtIg[m]==0 and gtIg[gind]==1:
|
322 |
-
break
|
323 |
-
# continue to next gt unless better match made
|
324 |
-
if ious[dind,gind] < iou:
|
325 |
-
continue
|
326 |
-
# if match successful and best so far, store appropriately
|
327 |
-
iou=ious[dind,gind]
|
328 |
-
m=gind
|
329 |
-
# if match made store id of match for both dt and gt
|
330 |
-
if m ==-1:
|
331 |
-
continue
|
332 |
-
dtIg[tind,dind] = gtIg[m]
|
333 |
-
dtm[tind,dind] = gt[m]['id']
|
334 |
-
gtm[tind,m] = d['id']
|
335 |
-
# set unmatched detections outside of area range to ignore
|
336 |
-
a = np.array([d['area']<aRng[0] or d['area']>aRng[1] for d in dt]).reshape((1, len(dt)))
|
337 |
-
dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0)))
|
338 |
-
# only consider duplicates if dets are inside the area range
|
339 |
-
dtDup = np.logical_and(dtDup, np.logical_and(dtm==0, np.logical_not(np.repeat(a,T,0))))
|
340 |
-
# false positive img (fpi) when all gt are ignored and there remain detections
|
341 |
-
fpi = (gtIg.sum() == G) and np.any(dtIg == 0)
|
342 |
-
|
343 |
-
# store results for given image and category
|
344 |
-
return {
|
345 |
-
'image_id': imgId,
|
346 |
-
'category_id': catId,
|
347 |
-
'aRng': aRng,
|
348 |
-
'maxDet': maxDet,
|
349 |
-
'dtIds': [d['id'] for d in dt],
|
350 |
-
'gtIds': [g['id'] for g in gt],
|
351 |
-
'dtMatches': dtm,
|
352 |
-
'gtMatches': gtm,
|
353 |
-
'dtScores': [d['score'] for d in dt],
|
354 |
-
'gtIgnore': gtIg,
|
355 |
-
'dtIgnore': dtIg,
|
356 |
-
'dtDuplicates': dtDup,
|
357 |
-
'fpi': fpi,
|
358 |
-
}
|
359 |
-
|
360 |
-
def accumulate(self, p = None):
|
361 |
-
'''
|
362 |
-
Accumulate per image evaluation results and store the result in self.eval
|
363 |
-
:param p: input params for evaluation
|
364 |
-
:return: None
|
365 |
-
'''
|
366 |
-
print('Accumulating evaluation results...')
|
367 |
-
tic = time.time()
|
368 |
-
if not self.evalImgs:
|
369 |
-
print('Please run evaluate() first')
|
370 |
-
# allows input customized parameters
|
371 |
-
if p is None:
|
372 |
-
p = self.params
|
373 |
-
p.catIds = p.catIds if p.useCats == 1 else [-1]
|
374 |
-
T = len(p.iouThrs)
|
375 |
-
R = len(p.recThrs)
|
376 |
-
K = len(p.catIds) if p.useCats else 1
|
377 |
-
A = len(p.areaRng)
|
378 |
-
M = len(p.maxDets)
|
379 |
-
precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories
|
380 |
-
recall = -np.ones((T,K,A,M))
|
381 |
-
scores = -np.ones((T,R,K,A,M))
|
382 |
-
TP = -np.ones((T,K,A,M))
|
383 |
-
FP = -np.ones((T,K,A,M))
|
384 |
-
FN = -np.ones((T,K,A,M))
|
385 |
-
duplicates = -np.ones((T,K,A,M))
|
386 |
-
FPI = -np.ones((T,K,A,M))
|
387 |
-
|
388 |
-
# matrix of arrays
|
389 |
-
TPC = np.empty((T,K,A,M), dtype=object)
|
390 |
-
FPC = np.empty((T,K,A,M), dtype=object)
|
391 |
-
sorted_conf = np.empty((K,A,M), dtype=object)
|
392 |
-
|
393 |
-
# create dictionary for future indexing
|
394 |
-
_pe = self._paramsEval
|
395 |
-
catIds = _pe.catIds if _pe.useCats else [-1]
|
396 |
-
setK = set(catIds)
|
397 |
-
setA = set(map(tuple, _pe.areaRng))
|
398 |
-
setM = set(_pe.maxDets)
|
399 |
-
setI = set(_pe.imgIds)
|
400 |
-
# get inds to evaluate
|
401 |
-
k_list = [n for n, k in enumerate(p.catIds) if k in setK]
|
402 |
-
m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
|
403 |
-
a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA]
|
404 |
-
i_list = [n for n, i in enumerate(p.imgIds) if i in setI]
|
405 |
-
I0 = len(_pe.imgIds)
|
406 |
-
A0 = len(_pe.areaRng)
|
407 |
-
# retrieve E at each category, area range, and max number of detections
|
408 |
-
for k, k0 in enumerate(k_list):
|
409 |
-
Nk = k0*A0*I0
|
410 |
-
for a, a0 in enumerate(a_list):
|
411 |
-
Na = a0*I0
|
412 |
-
for m, maxDet in enumerate(m_list):
|
413 |
-
E = [self.evalImgs[Nk + Na + i] for i in i_list]
|
414 |
-
E = [e for e in E if not e is None]
|
415 |
-
if len(E) == 0:
|
416 |
-
continue
|
417 |
-
dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E])
|
418 |
-
|
419 |
-
# different sorting method generates slightly different results.
|
420 |
-
# mergesort is used to be consistent as Matlab implementation.
|
421 |
-
inds = np.argsort(-dtScores, kind='mergesort')
|
422 |
-
dtScoresSorted = dtScores[inds]
|
423 |
-
sorted_conf[k,a,m] = dtScoresSorted.copy()
|
424 |
-
|
425 |
-
dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds]
|
426 |
-
dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds]
|
427 |
-
dtDups = np.concatenate([e['dtDuplicates'][:,0:maxDet] for e in E], axis=1)[:,inds]
|
428 |
-
gtIg = np.concatenate([e['gtIgnore'] for e in E])
|
429 |
-
npig = np.count_nonzero(gtIg==0) # number of not ignored gt objects
|
430 |
-
fpi = np.array([e['fpi'] for e in E]) # false positive image (no gt objects)
|
431 |
-
# if npig == 0:
|
432 |
-
# print("No ground truth objects, continuing...")
|
433 |
-
# continue
|
434 |
-
tps = np.logical_and( dtm, np.logical_not(dtIg) )
|
435 |
-
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) )
|
436 |
-
|
437 |
-
tp_sum = np.cumsum(tps, axis=1).astype(dtype=float)
|
438 |
-
fp_sum = np.cumsum(fps, axis=1).astype(dtype=float)
|
439 |
-
fpi_sum = np.cumsum(fpi).astype(dtype=int)
|
440 |
-
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
|
441 |
-
tp = np.array(tp)
|
442 |
-
fp = np.array(fp)
|
443 |
-
fn = npig - tp # difference between gt and tp
|
444 |
-
nd = len(tp)
|
445 |
-
rc = tp / npig if npig else [0]
|
446 |
-
pr = tp / (fp+tp+np.spacing(1))
|
447 |
-
q = np.zeros((R,))
|
448 |
-
ss = np.zeros((R,)) #
|
449 |
-
|
450 |
-
if nd:
|
451 |
-
recall[t,k,a,m] = rc[-1]
|
452 |
-
else:
|
453 |
-
recall[t,k,a,m] = 0
|
454 |
-
|
455 |
-
TP[t,k,a,m] = tp[-1] if nd else 0
|
456 |
-
FP[t,k,a,m] = fp[-1] if nd else 0
|
457 |
-
FN[t,k,a,m] = fn[-1] if nd else npig
|
458 |
-
duplicates[t,k,a,m] = np.sum(dtDups[t, :])
|
459 |
-
FPI[t,k,a,m] = fpi_sum[-1]
|
460 |
-
TPC[t,k,a,m] = tp.copy()
|
461 |
-
FPC[t,k,a,m] = fp.copy()
|
462 |
-
|
463 |
-
# numpy is slow without cython optimization for accessing elements
|
464 |
-
# use python array gets significant speed improvement
|
465 |
-
pr = pr.tolist(); q = q.tolist()
|
466 |
-
|
467 |
-
for i in range(nd-1, 0, -1):
|
468 |
-
if pr[i] > pr[i-1]:
|
469 |
-
pr[i-1] = pr[i]
|
470 |
-
|
471 |
-
inds = np.searchsorted(rc, p.recThrs, side='left')
|
472 |
-
try:
|
473 |
-
for ri, pi in enumerate(inds):
|
474 |
-
q[ri] = pr[pi]
|
475 |
-
ss[ri] = dtScoresSorted[pi]
|
476 |
-
except:
|
477 |
-
pass
|
478 |
-
precision[t,:,k,a,m] = np.array(q)
|
479 |
-
scores[t,:,k,a,m] = np.array(ss)
|
480 |
-
self.eval = {
|
481 |
-
'params': p,
|
482 |
-
'counts': [T, R, K, A, M],
|
483 |
-
'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
|
484 |
-
'precision': precision,
|
485 |
-
'recall': recall,
|
486 |
-
'scores': scores,
|
487 |
-
'TP': TP,
|
488 |
-
'FP': FP,
|
489 |
-
'FN': FN,
|
490 |
-
'duplicates': duplicates,
|
491 |
-
'support': TP + FN,
|
492 |
-
'FPI': FPI,
|
493 |
-
'TPC': TPC,
|
494 |
-
'FPC': FPC,
|
495 |
-
'sorted_conf': sorted_conf,
|
496 |
-
}
|
497 |
-
toc = time.time()
|
498 |
-
print('DONE (t={:0.2f}s).'.format( toc-tic))
|
499 |
-
|
500 |
-
def summarize(self):
|
501 |
-
results = {}
|
502 |
-
max_dets = self.params.maxDets[-1]
|
503 |
-
min_iou = self.params.iouThrs[0]
|
504 |
-
|
505 |
-
results['params'] = self.params
|
506 |
-
results['eval'] = self.eval
|
507 |
-
results['metrics'] = {}
|
508 |
-
|
509 |
-
# for area_lbl in self.params.areaRngLbl:
|
510 |
-
# results.append(self._summarize('ap', iouThr=min_iou,
|
511 |
-
# areaRng=area_lbl, maxDets=max_dets))
|
512 |
-
|
513 |
-
# for area_lbl in self.params.areaRngLbl:
|
514 |
-
# results.append(self._summarize('ar', iouThr=min_iou,
|
515 |
-
# areaRng=area_lbl, maxDets=max_dets))
|
516 |
-
|
517 |
-
metrics_str = f"{'tp':>6}, {'fp':>6}, {'fn':>6}, {'dup':>6}, "
|
518 |
-
metrics_str += f"{'pr':>5.2}, {'rec':>5.2}, {'f1':>5.2}, {'supp':>6}"
|
519 |
-
metrics_str += f", {'fpi':>6}, {'nImgs':>6}"
|
520 |
-
print('{:>51} {}'.format('METRIC', metrics_str))
|
521 |
-
for area_lbl in self.params.areaRngLbl:
|
522 |
-
results['metrics'][area_lbl] = self._summarize(
|
523 |
-
'pr_rec_f1',
|
524 |
-
iouThr=min_iou,
|
525 |
-
areaRng=area_lbl,
|
526 |
-
maxDets=max_dets
|
527 |
-
)
|
528 |
-
|
529 |
-
return results
|
530 |
-
|
531 |
-
def _summarize(self, metric_type='ap', iouThr=None, areaRng='all', maxDets=100):
|
532 |
-
"""
|
533 |
-
Helper function to print and obtain metrics of types:
|
534 |
-
- ap: average precision
|
535 |
-
- ar: average recall
|
536 |
-
- cf: tp, fp, fn, precision, recall, f1
|
537 |
-
values from COCOeval object
|
538 |
-
"""
|
539 |
-
def _summarize_ap_ar(ap=1, iouThr=None, areaRng='all', maxDets=100):
|
540 |
-
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
|
541 |
-
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
|
542 |
-
typeStr = '(AP)' if ap == 1 else '(AR)'
|
543 |
-
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
|
544 |
-
if iouThr is None else '{:0.2f}'.format(iouThr)
|
545 |
-
|
546 |
-
aind = [i for i, aRng in enumerate(
|
547 |
-
p.areaRngLbl) if aRng == areaRng]
|
548 |
-
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
|
549 |
-
|
550 |
-
if ap == 1:
|
551 |
-
# dimension of precision: [TxRxKxAxM]
|
552 |
-
s = self.eval['precision']
|
553 |
-
# IoU
|
554 |
-
if iouThr is not None:
|
555 |
-
t = np.where(iouThr == p.iouThrs)[0]
|
556 |
-
s = s[t]
|
557 |
-
s = s[:, :, :, aind, mind]
|
558 |
-
else:
|
559 |
-
# dimension of recall: [TxKxAxM]
|
560 |
-
s = self.eval['recall']
|
561 |
-
if iouThr is not None:
|
562 |
-
t = np.where(iouThr == p.iouThrs)[0]
|
563 |
-
s = s[t]
|
564 |
-
s = s[:, :, aind, mind]
|
565 |
-
if len(s[s > -1]) == 0:
|
566 |
-
mean_s = -1
|
567 |
-
else:
|
568 |
-
mean_s = np.mean(s[s > -1])
|
569 |
-
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
|
570 |
-
return mean_s
|
571 |
-
|
572 |
-
def _summarize_pr_rec_f1(iouThr=None, areaRng='all', maxDets=100):
|
573 |
-
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
|
574 |
-
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
|
575 |
-
|
576 |
-
# dimension of TP, FP, FN [TxKxAxM]
|
577 |
-
tp = self.eval['TP']
|
578 |
-
fp = self.eval['FP']
|
579 |
-
fn = self.eval['FN']
|
580 |
-
dup = self.eval['duplicates']
|
581 |
-
fpi = self.eval['FPI']
|
582 |
-
nImgs = len(p.imgIds)
|
583 |
-
|
584 |
-
# filter by IoU
|
585 |
-
if iouThr is not None:
|
586 |
-
t = np.where(iouThr == p.iouThrs)[0]
|
587 |
-
tp, fp, fn = tp[t], fp[t], fn[t]
|
588 |
-
dup = dup[t]
|
589 |
-
fpi = fpi[t]
|
590 |
-
|
591 |
-
# filter by area and maxDets
|
592 |
-
tp = tp[:, :, aind, mind].squeeze()
|
593 |
-
fp = fp[:, :, aind, mind].squeeze()
|
594 |
-
fn = fn[:, :, aind, mind].squeeze()
|
595 |
-
dup = dup[:, :, aind, mind].squeeze()
|
596 |
-
fpi = fpi[:, :, aind, mind].squeeze()
|
597 |
-
|
598 |
-
# handle case where tp, fp, fn and dup are empty (no gt and no dt)
|
599 |
-
if all([not np.any(m) for m in [tp, fp, fn, dup, fpi]]):
|
600 |
-
tp, fp, fn, dup, fpi =[-1] * 5
|
601 |
-
else:
|
602 |
-
tp, fp, fn, dup, fpi = [e.item() for e in [tp, fp, fn, dup, fpi]]
|
603 |
-
|
604 |
-
# compute precision, recall, f1
|
605 |
-
if tp == -1 and fp == -1 and fn == -1:
|
606 |
-
pr, rec, f1 = -1, -1, -1
|
607 |
-
support, fpi = 0, 0
|
608 |
-
else:
|
609 |
-
pr = 0 if tp + fp == 0 else tp / (tp + fp)
|
610 |
-
rec = 0 if tp + fn == 0 else tp / (tp + fn)
|
611 |
-
f1 = 0 if pr + rec == 0 else 2 * pr * rec / (pr + rec)
|
612 |
-
support = tp + fn
|
613 |
-
# print(f"{tp=}, {fp=}, {fn=}, {dup=}, {pr=}, {rec=}, {f1=}, {support=}, {fpi=}")
|
614 |
-
|
615 |
-
iStr = '@[ IoU={:<9} | area={:>9s} | maxDets={:>3d} ] = {}'
|
616 |
-
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
|
617 |
-
if iouThr is None else '{:0.2f}'.format(iouThr)
|
618 |
-
metrics_str = f"{tp:>6.0f}, {fp:>6.0f}, {fn:>6.0f}, {dup:>6.0f}, "
|
619 |
-
metrics_str += f"{pr:>5.2f}, {rec:>5.2f}, {f1:>5.2f}, {support:>6.0f}, "
|
620 |
-
metrics_str += f"{fpi:>6.0f}, {nImgs:>6.0f}"
|
621 |
-
print(iStr.format(iouStr, areaRng, maxDets, metrics_str))
|
622 |
-
|
623 |
-
return {
|
624 |
-
'range': p.areaRng[aind[0]],
|
625 |
-
'iouThr': iouStr,
|
626 |
-
'maxDets': maxDets,
|
627 |
-
'tp': int(tp),
|
628 |
-
'fp': int(fp),
|
629 |
-
'fn': int(fn),
|
630 |
-
'duplicates': int(dup),
|
631 |
-
'precision': pr,
|
632 |
-
'recall': rec,
|
633 |
-
'f1': f1,
|
634 |
-
'support': int(support),
|
635 |
-
'fpi': int(fpi),
|
636 |
-
'nImgs': nImgs,
|
637 |
-
}
|
638 |
-
|
639 |
-
p = self.params
|
640 |
-
if metric_type in ['ap', 'ar']:
|
641 |
-
ap = 1 if metric_type == 'ap' else 0
|
642 |
-
return _summarize_ap_ar(ap, iouThr=iouThr, areaRng=areaRng, maxDets=maxDets)
|
643 |
-
|
644 |
-
# return tp, fp, fn, pr, rec, f1, support, fpi, nImgs
|
645 |
-
return _summarize_pr_rec_f1(iouThr=iouThr, areaRng=areaRng, maxDets=maxDets)
|
646 |
-
|
647 |
-
def __str__(self):
|
648 |
-
self.summarize()
|
649 |
-
|
650 |
-
class Params:
|
651 |
-
'''
|
652 |
-
Params for coco evaluation api
|
653 |
-
'''
|
654 |
-
def setDetParams(self):
|
655 |
-
self.imgIds = []
|
656 |
-
self.catIds = []
|
657 |
-
# np.arange causes trouble. the data point on arange is slightly larger than the true value
|
658 |
-
self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
|
659 |
-
self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
|
660 |
-
self.maxDets = [1, 10, 100]
|
661 |
-
self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
|
662 |
-
self.areaRngLbl = ['all', 'small', 'medium', 'large']
|
663 |
-
self.useCats = 1
|
664 |
-
|
665 |
-
def setKpParams(self):
|
666 |
-
self.imgIds = []
|
667 |
-
self.catIds = []
|
668 |
-
# np.arange causes trouble. the data point on arange is slightly larger than the true value
|
669 |
-
self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
|
670 |
-
self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
|
671 |
-
self.maxDets = [20]
|
672 |
-
self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
|
673 |
-
self.areaRngLbl = ['all', 'medium', 'large']
|
674 |
-
self.useCats = 1
|
675 |
-
self.kpt_oks_sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0
|
676 |
-
|
677 |
-
def __init__(self, iouType='segm'):
|
678 |
-
if iouType == 'segm' or iouType == 'bbox':
|
679 |
-
self.setDetParams()
|
680 |
-
elif iouType == 'keypoints':
|
681 |
-
self.setKpParams()
|
682 |
-
else:
|
683 |
-
raise Exception('iouType not supported')
|
684 |
-
self.iouType = iouType
|
685 |
-
# useSegm is deprecated
|
686 |
-
self.useSegm = None
|
687 |
-
|
688 |
-
def __repr__(self) -> str:
|
689 |
-
return str(self.__dict__)
|
690 |
-
|
691 |
-
def __iter__(self):
|
692 |
-
return iter(self.__dict__.items())
|
693 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modified_coco/pr_rec_f1.py
DELETED
@@ -1,620 +0,0 @@
|
|
1 |
-
# Copyright The PyTorch Lightning team.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# NOTE: This metric is based on torchmetrics.detection.mean_ap and
|
16 |
-
# then modified to support the evaluation of precision, recall, f1 and support
|
17 |
-
# for object detection. It can also be used to evaluate the mean average precision
|
18 |
-
# but some modifications are needed. Additionally, numpy is used instead of torch
|
19 |
-
|
20 |
-
import contextlib
|
21 |
-
import io
|
22 |
-
import json
|
23 |
-
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
24 |
-
from typing_extensions import Literal
|
25 |
-
import numpy as np
|
26 |
-
from modified_coco.utils import _fix_empty_arrays, _input_validator, box_convert
|
27 |
-
|
28 |
-
try:
|
29 |
-
import pycocotools.mask as mask_utils
|
30 |
-
from pycocotools.coco import COCO
|
31 |
-
# from pycocotools.cocoeval import COCOeval
|
32 |
-
from modified_coco.cocoeval import COCOeval # use our own version of COCOeval
|
33 |
-
except ImportError:
|
34 |
-
raise ModuleNotFoundError(
|
35 |
-
"`MAP` metric requires that `pycocotools` installed."
|
36 |
-
" Please install with `pip install pycocotools`"
|
37 |
-
)
|
38 |
-
|
39 |
-
class PrecisionRecallF1Support:
|
40 |
-
r"""Compute the Precision, Recall, F1 and Support scores for object detection.
|
41 |
-
|
42 |
-
- Precision = :math:`\frac{TP}{TP + FP}`
|
43 |
-
- Recall = :math:`\frac{TP}{TP + FN}`
|
44 |
-
- F1 = :math:`\frac{2 * Precision * Recall}{Precision + Recall}`
|
45 |
-
- Support = :math:`TP + FN`
|
46 |
-
|
47 |
-
As input to ``forward`` and ``update`` the metric accepts the following input:
|
48 |
-
|
49 |
-
- ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
|
50 |
-
(each dictionary corresponds to a single image). Parameters that should be provided per dict:
|
51 |
-
- boxes: (:class:`~np.ndarray`) of shape ``(num_boxes, 4)`` containing ``num_boxes``
|
52 |
-
detection boxes of the format specified in the constructor. By default, this method expects
|
53 |
-
``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
|
54 |
-
- scores: :class:`~np.ndarray` of shape ``(num_boxes)`` containing detection scores
|
55 |
-
for the boxes.
|
56 |
-
- labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed detection
|
57 |
-
classes for the boxes.
|
58 |
-
- masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)`` containing
|
59 |
-
boolean masks. Only required when `iou_type="segm"`.
|
60 |
-
|
61 |
-
- ``target`` (:class:`~List`) A list consisting of dictionaries each containing the key-values
|
62 |
-
(each dictionary corresponds to a single image). Parameters that should be provided per dict:
|
63 |
-
- boxes: :class:`~np.ndarray` of shape ``(num_boxes, 4)`` containing ``num_boxes``
|
64 |
-
ground truth boxes of the format specified in the constructor. By default, this method
|
65 |
-
expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
|
66 |
-
- labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed ground
|
67 |
-
truth classes for the boxes.
|
68 |
-
- masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)``
|
69 |
-
containing boolean masks. Only required when `iou_type="segm"`.
|
70 |
-
- iscrowd: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0/1 values
|
71 |
-
indicating whether the bounding box/masks indicate a crowd of objects. Value is optional,
|
72 |
-
and if not provided it will automatically be set to 0.
|
73 |
-
- area: :class:`~np.ndarray` of shape ``(num_boxes)`` containing the area of the
|
74 |
-
object. Value if optional, and if not provided will be automatically calculated based
|
75 |
-
on the bounding box/masks provided. Only affects when 'area_ranges' is provided.
|
76 |
-
|
77 |
-
As output of ``forward`` and ``compute`` the metric returns the following output:
|
78 |
-
|
79 |
-
- ``results``: A dictionary containing the following key-values:
|
80 |
-
|
81 |
-
- ``params``: COCOeval parameters object
|
82 |
-
- ``eval``: output of COCOeval.accumuate()
|
83 |
-
- ``metrics``: A dictionary containing the following key-values for each area range:
|
84 |
-
- ``area_range``: str containing the area range
|
85 |
-
- ``iouThr``: str containing the IoU threshold
|
86 |
-
- ``maxDets``: int containing the maximum number of detections
|
87 |
-
- ``tp``: int containing the number of true positives
|
88 |
-
- ``fp``: int containing the number of false positives
|
89 |
-
- ``fn``: int containing the number of false negatives
|
90 |
-
- ``precision``: float containing the precision
|
91 |
-
- ``recall``: float containing the recall
|
92 |
-
- ``f1``: float containing the f1 score
|
93 |
-
- ``support``: int containing the support (tp + fn)
|
94 |
-
|
95 |
-
.. note::
|
96 |
-
This metric utilizes the official `pycocotools` implementation as its backend. This means that the metric
|
97 |
-
requires you to have `pycocotools` installed. In addition we require `torchvision` version 0.8.0 or newer.
|
98 |
-
Please install with ``pip install torchmetrics[detection]``.
|
99 |
-
|
100 |
-
Args:
|
101 |
-
box_format:
|
102 |
-
Input format of given boxes. Supported formats are ``[xyxy, xywh, cxcywh]``.
|
103 |
-
iou_type:
|
104 |
-
Type of input (either masks or bounding-boxes) used for computing IOU.
|
105 |
-
Supported IOU types are ``["bbox", "segm"]``. If using ``"segm"``, masks should be provided in input.
|
106 |
-
iou_thresholds:
|
107 |
-
IoU thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0.5,...,0.95]``
|
108 |
-
with step ``0.05``. Else provide a list of floats.
|
109 |
-
rec_thresholds:
|
110 |
-
Recall thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0,...,1]``
|
111 |
-
with step ``0.01``. Else provide a list of floats.
|
112 |
-
max_detection_thresholds:
|
113 |
-
Thresholds on max detections per image. If set to `None` will use thresholds ``[100]``.
|
114 |
-
Else, please provide a list of ints.
|
115 |
-
area_ranges:
|
116 |
-
Area ranges for evaluation. If set to ``None`` it corresponds to the ranges ``[[0^2, 1e5^2]]``.
|
117 |
-
Else, please provide a list of lists of length 2.
|
118 |
-
area_ranges_labels:
|
119 |
-
Labels for the area ranges. If set to ``None`` it corresponds to the labels ``["all"]``.
|
120 |
-
Else, please provide a list of strings of the same length as ``area_ranges``.
|
121 |
-
class_agnostic:
|
122 |
-
If ``True`` will compute metrics globally. If ``False`` will compute metrics per class.
|
123 |
-
Default: ``True`` (per class metrics are not supported yet)
|
124 |
-
debug:
|
125 |
-
If ``True`` will print the COCOEval summary to stdout.
|
126 |
-
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
|
127 |
-
|
128 |
-
Raises:
|
129 |
-
ValueError:
|
130 |
-
If ``box_format`` is not one of ``"xyxy"``, ``"xywh"`` or ``"cxcywh"``
|
131 |
-
ValueError:
|
132 |
-
If ``iou_type`` is not one of ``"bbox"`` or ``"segm"``
|
133 |
-
ValueError:
|
134 |
-
If ``iou_thresholds`` is not None or a list of floats
|
135 |
-
ValueError:
|
136 |
-
If ``rec_thresholds`` is not None or a list of floats
|
137 |
-
ValueError:
|
138 |
-
If ``max_detection_thresholds`` is not None or a list of ints
|
139 |
-
ValueError:
|
140 |
-
If ``area_ranges`` is not None or a list of lists of length 2
|
141 |
-
ValueError:
|
142 |
-
If ``area_ranges_labels`` is not None or a list of strings
|
143 |
-
|
144 |
-
Example:
|
145 |
-
>>> import numpy as np
|
146 |
-
>>> from metrics.detection import MeanAveragePrecision
|
147 |
-
>>> preds = [
|
148 |
-
... dict(
|
149 |
-
... boxes=np.array([[258.0, 41.0, 606.0, 285.0]]),
|
150 |
-
... scores=np.array([0.536]),
|
151 |
-
... labels=np.array([0]),
|
152 |
-
... )
|
153 |
-
... ]
|
154 |
-
>>> target = [
|
155 |
-
... dict(
|
156 |
-
... boxes=np.array([[214.0, 41.0, 562.0, 285.0]]),
|
157 |
-
... labels=np.array([0]),
|
158 |
-
... )
|
159 |
-
... ]
|
160 |
-
>>> metric = PrecisionRecallF1Support()
|
161 |
-
>>> metric.update(preds, target)
|
162 |
-
>>> print(metric.compute())
|
163 |
-
{'params': <metrics.detection.cocoeval.Params at 0x16dc99150>,
|
164 |
-
'eval': ... output of COCOeval.accumuate(),
|
165 |
-
'metrics': {'all': {'range': [0, 10000000000.0],
|
166 |
-
'iouThr': '0.50',
|
167 |
-
'maxDets': 100,
|
168 |
-
'tp': 1,
|
169 |
-
'fp': 0,
|
170 |
-
'fn': 0,
|
171 |
-
'precision': 1.0,
|
172 |
-
'recall': 1.0,
|
173 |
-
'f1': 1.0,
|
174 |
-
'support': 1}}}
|
175 |
-
"""
|
176 |
-
is_differentiable: bool = False
|
177 |
-
higher_is_better: Optional[bool] = True
|
178 |
-
full_state_update: bool = True
|
179 |
-
plot_lower_bound: float = 0.0
|
180 |
-
plot_upper_bound: float = 1.0
|
181 |
-
|
182 |
-
detections: List[np.ndarray]
|
183 |
-
detection_scores: List[np.ndarray]
|
184 |
-
detection_labels: List[np.ndarray]
|
185 |
-
groundtruths: List[np.ndarray]
|
186 |
-
groundtruth_labels: List[np.ndarray]
|
187 |
-
groundtruth_crowds: List[np.ndarray]
|
188 |
-
groundtruth_area: List[np.ndarray]
|
189 |
-
|
190 |
-
def __init__(
|
191 |
-
self,
|
192 |
-
box_format: str = "xyxy",
|
193 |
-
iou_type: Literal["bbox", "segm"] = "bbox",
|
194 |
-
iou_thresholds: Optional[List[float]] = None,
|
195 |
-
rec_thresholds: Optional[List[float]] = None,
|
196 |
-
max_detection_thresholds: Optional[List[int]] = None,
|
197 |
-
area_ranges: Optional[List[List[int]]] = None,
|
198 |
-
area_ranges_labels: Optional[List[str]] = None,
|
199 |
-
class_agnostic: bool = True,
|
200 |
-
debug: bool = False,
|
201 |
-
**kwargs: Any,
|
202 |
-
) -> None:
|
203 |
-
|
204 |
-
allowed_box_formats = ("xyxy", "xywh", "cxcywh")
|
205 |
-
if box_format not in allowed_box_formats:
|
206 |
-
raise ValueError(
|
207 |
-
f"Expected argument `box_format` to be one of {allowed_box_formats} but got {box_format}")
|
208 |
-
self.box_format = box_format
|
209 |
-
|
210 |
-
allowed_iou_types = ("segm", "bbox")
|
211 |
-
if iou_type not in allowed_iou_types:
|
212 |
-
raise ValueError(
|
213 |
-
f"Expected argument `iou_type` to be one of {allowed_iou_types} but got {iou_type}")
|
214 |
-
self.iou_type = iou_type
|
215 |
-
|
216 |
-
if iou_thresholds is not None and not isinstance(iou_thresholds, list):
|
217 |
-
raise ValueError(
|
218 |
-
f"Expected argument `iou_thresholds` to either be `None` or a list of floats but got {iou_thresholds}"
|
219 |
-
)
|
220 |
-
self.iou_thresholds = iou_thresholds or np.linspace(
|
221 |
-
0.5, 0.95, round((0.95 - 0.5) / 0.05) + 1).tolist()
|
222 |
-
|
223 |
-
if rec_thresholds is not None and not isinstance(rec_thresholds, list):
|
224 |
-
raise ValueError(
|
225 |
-
f"Expected argument `rec_thresholds` to either be `None` or a list of floats but got {rec_thresholds}"
|
226 |
-
)
|
227 |
-
self.rec_thresholds = rec_thresholds or np.linspace(
|
228 |
-
0.0, 1.00, round(1.00 / 0.01) + 1).tolist()
|
229 |
-
|
230 |
-
if max_detection_thresholds is not None and not isinstance(max_detection_thresholds, list):
|
231 |
-
raise ValueError(
|
232 |
-
f"Expected argument `max_detection_thresholds` to either be `None` or a list of ints"
|
233 |
-
f" but got {max_detection_thresholds}"
|
234 |
-
)
|
235 |
-
max_det_thr = np.sort(np.array(
|
236 |
-
max_detection_thresholds or [100], dtype=np.uint))
|
237 |
-
self.max_detection_thresholds = max_det_thr.tolist()
|
238 |
-
|
239 |
-
# check area ranges
|
240 |
-
if area_ranges is not None:
|
241 |
-
if not isinstance(area_ranges, list):
|
242 |
-
raise ValueError(
|
243 |
-
f"Expected argument `area_ranges` to either be `None` or a list of lists but got {area_ranges}"
|
244 |
-
)
|
245 |
-
for area_range in area_ranges:
|
246 |
-
if not isinstance(area_range, list) or len(area_range) != 2:
|
247 |
-
raise ValueError(
|
248 |
-
f"Expected argument `area_ranges` to be a list of lists of length 2 but got {area_ranges}"
|
249 |
-
)
|
250 |
-
self.area_ranges = area_ranges if area_ranges is not None else [
|
251 |
-
[0**2, 1e5**2]]
|
252 |
-
|
253 |
-
if area_ranges_labels is not None:
|
254 |
-
if area_ranges is None:
|
255 |
-
raise ValueError(
|
256 |
-
"Expected argument `area_ranges_labels` to be `None` if `area_ranges` is not provided"
|
257 |
-
)
|
258 |
-
if not isinstance(area_ranges_labels, list):
|
259 |
-
raise ValueError(
|
260 |
-
f"Expected argument `area_ranges_labels` to either be `None` or a list of strings"
|
261 |
-
f" but got {area_ranges_labels}"
|
262 |
-
)
|
263 |
-
if len(area_ranges_labels) != len(area_ranges):
|
264 |
-
raise ValueError(
|
265 |
-
f"Expected argument `area_ranges_labels` to be a list of length {len(area_ranges)}"
|
266 |
-
f" but got {area_ranges_labels}"
|
267 |
-
)
|
268 |
-
self.area_ranges_labels = area_ranges_labels if area_ranges_labels is not None else [
|
269 |
-
"all"]
|
270 |
-
|
271 |
-
# if not isinstance(class_metrics, bool):
|
272 |
-
# raise ValueError(
|
273 |
-
# "Expected argument `class_metrics` to be a boolean")
|
274 |
-
# self.class_metrics = class_metrics
|
275 |
-
|
276 |
-
if not isinstance(class_agnostic, bool):
|
277 |
-
raise ValueError(
|
278 |
-
"Expected argument `class_agnostic` to be a boolean")
|
279 |
-
self.class_agnostic = class_agnostic
|
280 |
-
|
281 |
-
if not isinstance(debug, bool):
|
282 |
-
raise ValueError("Expected argument `debug` to be a boolean")
|
283 |
-
self.debug = debug
|
284 |
-
|
285 |
-
self.detections = []
|
286 |
-
self.detection_scores = []
|
287 |
-
self.detection_labels = []
|
288 |
-
self.groundtruths = []
|
289 |
-
self.groundtruth_labels = []
|
290 |
-
self.groundtruth_crowds = []
|
291 |
-
self.groundtruth_area = []
|
292 |
-
|
293 |
-
# self.add_state("detections", default=[], dist_reduce_fx=None)
|
294 |
-
# self.add_state("detection_scores", default=[], dist_reduce_fx=None)
|
295 |
-
# self.add_state("detection_labels", default=[], dist_reduce_fx=None)
|
296 |
-
# self.add_state("groundtruths", default=[], dist_reduce_fx=None)
|
297 |
-
# self.add_state("groundtruth_labels", default=[], dist_reduce_fx=None)
|
298 |
-
# self.add_state("groundtruth_crowds", default=[], dist_reduce_fx=None)
|
299 |
-
# self.add_state("groundtruth_area", default=[], dist_reduce_fx=None)
|
300 |
-
|
301 |
-
def update(self, preds: List[Dict[str, np.ndarray]], target: List[Dict[str, np.ndarray]]) -> None:
|
302 |
-
"""Update metric state.
|
303 |
-
|
304 |
-
Raises:
|
305 |
-
ValueError:
|
306 |
-
If ``preds`` is not of type (:class:`~List[Dict[str, np.ndarray]]`)
|
307 |
-
ValueError:
|
308 |
-
If ``target`` is not of type ``List[Dict[str, np.ndarray]]``
|
309 |
-
ValueError:
|
310 |
-
If ``preds`` and ``target`` are not of the same length
|
311 |
-
ValueError:
|
312 |
-
If any of ``preds.boxes``, ``preds.scores`` and ``preds.labels`` are not of the same length
|
313 |
-
ValueError:
|
314 |
-
If any of ``target.boxes`` and ``target.labels`` are not of the same length
|
315 |
-
ValueError:
|
316 |
-
If any box is not type float and of length 4
|
317 |
-
ValueError:
|
318 |
-
If any class is not type int and of length 1
|
319 |
-
ValueError:
|
320 |
-
If any score is not type float and of length 1
|
321 |
-
"""
|
322 |
-
_input_validator(preds, target, iou_type=self.iou_type)
|
323 |
-
|
324 |
-
for item in preds:
|
325 |
-
detections = self._get_safe_item_values(item)
|
326 |
-
|
327 |
-
self.detections.append(detections)
|
328 |
-
self.detection_labels.append(item["labels"])
|
329 |
-
self.detection_scores.append(item["scores"])
|
330 |
-
|
331 |
-
for item in target:
|
332 |
-
groundtruths = self._get_safe_item_values(item)
|
333 |
-
self.groundtruths.append(groundtruths)
|
334 |
-
self.groundtruth_labels.append(item["labels"])
|
335 |
-
self.groundtruth_crowds.append(
|
336 |
-
item.get("iscrowd", np.zeros_like(item["labels"])))
|
337 |
-
self.groundtruth_area.append(
|
338 |
-
item.get("area", np.zeros_like(item["labels"])))
|
339 |
-
|
340 |
-
def compute(self) -> dict:
|
341 |
-
"""Computes the metric."""
|
342 |
-
coco_target, coco_preds = COCO(), COCO()
|
343 |
-
|
344 |
-
coco_target.dataset = self._get_coco_format(
|
345 |
-
self.groundtruths, self.groundtruth_labels, crowds=self.groundtruth_crowds, area=self.groundtruth_area
|
346 |
-
)
|
347 |
-
coco_preds.dataset = self._get_coco_format(
|
348 |
-
self.detections, self.detection_labels, scores=self.detection_scores)
|
349 |
-
|
350 |
-
with contextlib.redirect_stdout(io.StringIO()) as f:
|
351 |
-
coco_target.createIndex()
|
352 |
-
coco_preds.createIndex()
|
353 |
-
|
354 |
-
coco_eval = COCOeval(coco_target, coco_preds,
|
355 |
-
iouType=self.iou_type)
|
356 |
-
coco_eval.params.iouThrs = np.array(
|
357 |
-
self.iou_thresholds, dtype=np.float64)
|
358 |
-
coco_eval.params.recThrs = np.array(
|
359 |
-
self.rec_thresholds, dtype=np.float64)
|
360 |
-
coco_eval.params.maxDets = self.max_detection_thresholds
|
361 |
-
coco_eval.params.areaRng = self.area_ranges
|
362 |
-
coco_eval.params.areaRngLbl = self.area_ranges_labels
|
363 |
-
coco_eval.params.useCats = 0 if self.class_agnostic else 1
|
364 |
-
|
365 |
-
coco_eval.evaluate()
|
366 |
-
coco_eval.accumulate()
|
367 |
-
|
368 |
-
if self.debug:
|
369 |
-
print(f.getvalue())
|
370 |
-
|
371 |
-
metrics = coco_eval.summarize()
|
372 |
-
return metrics
|
373 |
-
|
374 |
-
@staticmethod
|
375 |
-
def coco_to_np(
|
376 |
-
coco_preds: str,
|
377 |
-
coco_target: str,
|
378 |
-
iou_type: Literal["bbox", "segm"] = "bbox",
|
379 |
-
) -> Tuple[List[Dict[str, np.ndarray]], List[Dict[str, np.ndarray]]]:
|
380 |
-
"""Utility function for converting .json coco format files to the input format of this metric.
|
381 |
-
|
382 |
-
The function accepts a file for the predictions and a file for the target in coco format and converts them to
|
383 |
-
a list of dictionaries containing the boxes, labels and scores in the input format of this metric.
|
384 |
-
|
385 |
-
Args:
|
386 |
-
coco_preds: Path to the json file containing the predictions in coco format
|
387 |
-
coco_target: Path to the json file containing the targets in coco format
|
388 |
-
iou_type: Type of input, either `bbox` for bounding boxes or `segm` for segmentation masks
|
389 |
-
|
390 |
-
Returns:
|
391 |
-
preds: List of dictionaries containing the predictions in the input format of this metric
|
392 |
-
target: List of dictionaries containing the targets in the input format of this metric
|
393 |
-
|
394 |
-
Example:
|
395 |
-
>>> # File formats are defined at https://cocodataset.org/#format-data
|
396 |
-
>>> # Example files can be found at
|
397 |
-
>>> # https://github.com/cocodataset/cocoapi/tree/master/results
|
398 |
-
>>> from torchmetrics.detection import MeanAveragePrecision
|
399 |
-
>>> preds, target = MeanAveragePrecision.coco_to_tm(
|
400 |
-
... "instances_val2014_fakebbox100_results.json.json",
|
401 |
-
... "val2014_fake_eval_res.txt.json"
|
402 |
-
... iou_type="bbox"
|
403 |
-
... ) # doctest: +SKIP
|
404 |
-
|
405 |
-
"""
|
406 |
-
with contextlib.redirect_stdout(io.StringIO()):
|
407 |
-
gt = COCO(coco_target)
|
408 |
-
dt = gt.loadRes(coco_preds)
|
409 |
-
|
410 |
-
gt_dataset = gt.dataset["annotations"]
|
411 |
-
dt_dataset = dt.dataset["annotations"]
|
412 |
-
|
413 |
-
target = {}
|
414 |
-
for t in gt_dataset:
|
415 |
-
if t["image_id"] not in target:
|
416 |
-
target[t["image_id"]] = {
|
417 |
-
"boxes" if iou_type == "bbox" else "masks": [],
|
418 |
-
"labels": [],
|
419 |
-
"iscrowd": [],
|
420 |
-
"area": [],
|
421 |
-
}
|
422 |
-
if iou_type == "bbox":
|
423 |
-
target[t["image_id"]]["boxes"].append(t["bbox"])
|
424 |
-
else:
|
425 |
-
target[t["image_id"]]["masks"].append(gt.annToMask(t))
|
426 |
-
target[t["image_id"]]["labels"].append(t["category_id"])
|
427 |
-
target[t["image_id"]]["iscrowd"].append(t["iscrowd"])
|
428 |
-
target[t["image_id"]]["area"].append(t["area"])
|
429 |
-
|
430 |
-
preds = {}
|
431 |
-
for p in dt_dataset:
|
432 |
-
if p["image_id"] not in preds:
|
433 |
-
preds[p["image_id"]] = {
|
434 |
-
"boxes" if iou_type == "bbox" else "masks": [], "scores": [], "labels": []}
|
435 |
-
if iou_type == "bbox":
|
436 |
-
preds[p["image_id"]]["boxes"].append(p["bbox"])
|
437 |
-
else:
|
438 |
-
preds[p["image_id"]]["masks"].append(gt.annToMask(p))
|
439 |
-
preds[p["image_id"]]["scores"].append(p["score"])
|
440 |
-
preds[p["image_id"]]["labels"].append(p["category_id"])
|
441 |
-
for k in target: # add empty predictions for images without predictions
|
442 |
-
if k not in preds:
|
443 |
-
preds[k] = {"boxes" if iou_type ==
|
444 |
-
"bbox" else "masks": [], "scores": [], "labels": []}
|
445 |
-
|
446 |
-
batched_preds, batched_target = [], []
|
447 |
-
for key in target:
|
448 |
-
name = "boxes" if iou_type == "bbox" else "masks"
|
449 |
-
batched_preds.append(
|
450 |
-
{
|
451 |
-
name: np.array(
|
452 |
-
np.array(preds[key]["boxes"]), dtype=np.float32)
|
453 |
-
if iou_type == "bbox"
|
454 |
-
else np.array(np.array(preds[key]["masks"]), dtype=np.uint8),
|
455 |
-
"scores": np.array(preds[key]["scores"], dtype=np.float32),
|
456 |
-
"labels": np.array(preds[key]["labels"], dtype=np.int32),
|
457 |
-
}
|
458 |
-
)
|
459 |
-
batched_target.append(
|
460 |
-
{
|
461 |
-
name: np.array(
|
462 |
-
target[key]["boxes"], dtype=np.float32)
|
463 |
-
if iou_type == "bbox"
|
464 |
-
else np.array(np.array(target[key]["masks"]), dtype=np.uint8),
|
465 |
-
"labels": np.array(target[key]["labels"], dtype=np.int32),
|
466 |
-
"iscrowd": np.array(target[key]["iscrowd"], dtype=np.int32),
|
467 |
-
"area": np.array(target[key]["area"], dtype=np.float32),
|
468 |
-
}
|
469 |
-
)
|
470 |
-
|
471 |
-
return batched_preds, batched_target
|
472 |
-
|
473 |
-
def np_to_coco(self, name: str = "np_map_input") -> None:
|
474 |
-
"""Utility function for converting the input for this metric to coco format and saving it to a json file.
|
475 |
-
|
476 |
-
This function should be used after calling `.update(...)` or `.forward(...)` on all data that should be written
|
477 |
-
to the file, as the input is then internally cached. The function then converts to information to coco format
|
478 |
-
a writes it to json files.
|
479 |
-
|
480 |
-
Args:
|
481 |
-
name: Name of the output file, which will be appended with "_preds.json" and "_target.json"
|
482 |
-
|
483 |
-
Example:
|
484 |
-
>>> import numpy as np
|
485 |
-
>>> from metrics.detection import MeanAveragePrecision
|
486 |
-
>>> preds = [
|
487 |
-
... dict(
|
488 |
-
... boxes=np.array([[258.0, 41.0, 606.0, 285.0]]),
|
489 |
-
... scores=np.array([0.536]),
|
490 |
-
... labels=np.array([0]),
|
491 |
-
... )
|
492 |
-
... ]
|
493 |
-
>>> target = [
|
494 |
-
... dict(
|
495 |
-
... boxes=np.array([[214.0, 41.0, 562.0, 285.0]]),
|
496 |
-
... labels=np.array([0]),
|
497 |
-
... )
|
498 |
-
... ]
|
499 |
-
>>> metric = PrecisionRecallF1Support()
|
500 |
-
>>> metric.update(preds, target)
|
501 |
-
>>> metric.np_to_coco("np_map_input") # doctest: +SKIP
|
502 |
-
|
503 |
-
"""
|
504 |
-
target_dataset = self._get_coco_format(
|
505 |
-
self.groundtruths, self.groundtruth_labels)
|
506 |
-
preds_dataset = self._get_coco_format(
|
507 |
-
self.detections, self.detection_labels, self.detection_scores)
|
508 |
-
|
509 |
-
preds_json = json.dumps(preds_dataset["annotations"], indent=4)
|
510 |
-
target_json = json.dumps(target_dataset, indent=4)
|
511 |
-
|
512 |
-
with open(f"{name}_preds.json", "w") as f:
|
513 |
-
f.write(preds_json)
|
514 |
-
|
515 |
-
with open(f"{name}_target.json", "w") as f:
|
516 |
-
f.write(target_json)
|
517 |
-
|
518 |
-
def _get_safe_item_values(self, item: Dict[str, Any]) -> Union[np.ndarray, Tuple]:
|
519 |
-
"""Convert and return the boxes or masks from the item depending on the iou_type.
|
520 |
-
|
521 |
-
Args:
|
522 |
-
item: input dictionary containing the boxes or masks
|
523 |
-
|
524 |
-
Returns:
|
525 |
-
boxes or masks depending on the iou_type
|
526 |
-
|
527 |
-
"""
|
528 |
-
if self.iou_type == "bbox":
|
529 |
-
boxes = _fix_empty_arrays(item["boxes"])
|
530 |
-
if boxes.size > 0:
|
531 |
-
boxes = box_convert(
|
532 |
-
boxes, in_fmt=self.box_format, out_fmt="xywh")
|
533 |
-
return boxes
|
534 |
-
if self.iou_type == "segm":
|
535 |
-
masks = []
|
536 |
-
for i in item["masks"]:
|
537 |
-
rle = mask_utils.encode(np.asfortranarray(i))
|
538 |
-
masks.append((tuple(rle["size"]), rle["counts"]))
|
539 |
-
return tuple(masks)
|
540 |
-
raise Exception(f"IOU type {self.iou_type} is not supported")
|
541 |
-
|
542 |
-
def _get_classes(self) -> List:
|
543 |
-
"""Return a list of unique classes found in ground truth and detection data."""
|
544 |
-
all_labels = np.concatenate(
|
545 |
-
self.detection_labels + self.groundtruth_labels)
|
546 |
-
unique_classes = np.unique(all_labels)
|
547 |
-
return unique_classes.tolist()
|
548 |
-
|
549 |
-
def _get_coco_format(
|
550 |
-
self,
|
551 |
-
boxes: List[np.ndarray],
|
552 |
-
labels: List[np.ndarray],
|
553 |
-
scores: Optional[List[np.ndarray]] = None,
|
554 |
-
crowds: Optional[List[np.ndarray]] = None,
|
555 |
-
area: Optional[List[np.ndarray]] = None,
|
556 |
-
) -> Dict:
|
557 |
-
"""Transforms and returns all cached targets or predictions in COCO format.
|
558 |
-
|
559 |
-
Format is defined at https://cocodataset.org/#format-data
|
560 |
-
"""
|
561 |
-
images = []
|
562 |
-
annotations = []
|
563 |
-
annotation_id = 1 # has to start with 1, otherwise COCOEval results are wrong
|
564 |
-
|
565 |
-
for image_id, (image_boxes, image_labels) in enumerate(zip(boxes, labels)):
|
566 |
-
if self.iou_type == "segm" and len(image_boxes) == 0:
|
567 |
-
continue
|
568 |
-
|
569 |
-
if self.iou_type == "bbox":
|
570 |
-
image_boxes = image_boxes.tolist()
|
571 |
-
image_labels = image_labels.tolist()
|
572 |
-
|
573 |
-
images.append({"id": image_id})
|
574 |
-
if self.iou_type == "segm":
|
575 |
-
images[-1]["height"], images[-1]["width"] = image_boxes[0][0][0], image_boxes[0][0][1]
|
576 |
-
|
577 |
-
for k, (image_box, image_label) in enumerate(zip(image_boxes, image_labels)):
|
578 |
-
if self.iou_type == "bbox" and len(image_box) != 4:
|
579 |
-
raise ValueError(
|
580 |
-
f"Invalid input box of sample {image_id}, element {k} (expected 4 values, got {len(image_box)})"
|
581 |
-
)
|
582 |
-
|
583 |
-
if not isinstance(image_label, int):
|
584 |
-
raise ValueError(
|
585 |
-
f"Invalid input class of sample {image_id}, element {k}"
|
586 |
-
f" (expected value of type integer, got type {type(image_label)})"
|
587 |
-
)
|
588 |
-
|
589 |
-
stat = image_box if self.iou_type == "bbox" else {
|
590 |
-
"size": image_box[0], "counts": image_box[1]}
|
591 |
-
|
592 |
-
if area is not None and area[image_id][k].tolist() > 0:
|
593 |
-
area_stat = area[image_id][k].tolist()
|
594 |
-
else:
|
595 |
-
area_stat = image_box[2] * \
|
596 |
-
image_box[3] if self.iou_type == "bbox" else mask_utils.area(
|
597 |
-
stat)
|
598 |
-
|
599 |
-
annotation = {
|
600 |
-
"id": annotation_id,
|
601 |
-
"image_id": image_id,
|
602 |
-
"bbox" if self.iou_type == "bbox" else "segmentation": stat,
|
603 |
-
"area": area_stat,
|
604 |
-
"category_id": image_label,
|
605 |
-
"iscrowd": crowds[image_id][k].tolist() if crowds is not None else 0,
|
606 |
-
}
|
607 |
-
|
608 |
-
if scores is not None:
|
609 |
-
score = scores[image_id][k].tolist()
|
610 |
-
if not isinstance(score, float):
|
611 |
-
raise ValueError(
|
612 |
-
f"Invalid input score of sample {image_id}, element {k}"
|
613 |
-
f" (expected value of type float, got type {type(score)})"
|
614 |
-
)
|
615 |
-
annotation["score"] = score
|
616 |
-
annotations.append(annotation)
|
617 |
-
annotation_id += 1
|
618 |
-
|
619 |
-
classes = [{"id": i, "name": str(i)} for i in self._get_classes()]
|
620 |
-
return {"images": images, "annotations": annotations, "categories": classes}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modified_coco/utils.py
DELETED
@@ -1,220 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
def box_denormalize(boxes: np.ndarray, img_w: int, img_h: int) -> np.ndarray:
|
4 |
-
"""
|
5 |
-
Denormalizes boxes from [0, 1] to [0, img_w] and [0, img_h].
|
6 |
-
Args:
|
7 |
-
boxes (Tensor[N, 4]): boxes which will be denormalized.
|
8 |
-
img_w (int): Width of image.
|
9 |
-
img_h (int): Height of image.
|
10 |
-
|
11 |
-
Returns:
|
12 |
-
Tensor[N, 4]: Denormalized boxes.
|
13 |
-
"""
|
14 |
-
if boxes.size == 0:
|
15 |
-
return boxes
|
16 |
-
|
17 |
-
# check if boxes are normalized
|
18 |
-
if np.any(boxes > 1.0):
|
19 |
-
return boxes
|
20 |
-
|
21 |
-
boxes[:, 0::2] *= img_w
|
22 |
-
boxes[:, 1::2] *= img_h
|
23 |
-
return boxes
|
24 |
-
|
25 |
-
|
26 |
-
def box_convert(boxes: np.ndarray, in_fmt: str, out_fmt: str) -> np.ndarray:
|
27 |
-
"""
|
28 |
-
Converts boxes from given in_fmt to out_fmt.
|
29 |
-
Supported in_fmt and out_fmt are:
|
30 |
-
|
31 |
-
'xyxy': boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.
|
32 |
-
This is the format that torchvision utilities expect.
|
33 |
-
|
34 |
-
'xywh' : boxes are represented via corner, width and height, x1, y2 being top left, w, h being width and height.
|
35 |
-
|
36 |
-
'cxcywh' : boxes are represented via centre, width and height, cx, cy being center of box, w, h
|
37 |
-
being width and height.
|
38 |
-
|
39 |
-
Args:
|
40 |
-
boxes (Tensor[N, 4]): boxes which will be converted.
|
41 |
-
in_fmt (str): Input format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh'].
|
42 |
-
out_fmt (str): Output format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh']
|
43 |
-
|
44 |
-
Returns:
|
45 |
-
Tensor[N, 4]: Boxes into converted format.
|
46 |
-
"""
|
47 |
-
if boxes.size == 0:
|
48 |
-
return boxes
|
49 |
-
|
50 |
-
allowed_fmts = ("xyxy", "xywh", "cxcywh")
|
51 |
-
if in_fmt not in allowed_fmts or out_fmt not in allowed_fmts:
|
52 |
-
raise ValueError(
|
53 |
-
"Unsupported Bounding Box Conversions for given in_fmt and out_fmt")
|
54 |
-
|
55 |
-
if in_fmt == out_fmt:
|
56 |
-
return boxes.copy()
|
57 |
-
|
58 |
-
if in_fmt != "xyxy" and out_fmt != "xyxy":
|
59 |
-
# convert to xyxy and change in_fmt xyxy
|
60 |
-
if in_fmt == "xywh":
|
61 |
-
boxes = _box_xywh_to_xyxy(boxes)
|
62 |
-
elif in_fmt == "cxcywh":
|
63 |
-
boxes = _box_cxcywh_to_xyxy(boxes)
|
64 |
-
in_fmt = "xyxy"
|
65 |
-
|
66 |
-
if in_fmt == "xyxy":
|
67 |
-
if out_fmt == "xywh":
|
68 |
-
boxes = _box_xyxy_to_xywh(boxes)
|
69 |
-
elif out_fmt == "cxcywh":
|
70 |
-
boxes = _box_xyxy_to_cxcywh(boxes)
|
71 |
-
elif out_fmt == "xyxy":
|
72 |
-
if in_fmt == "xywh":
|
73 |
-
boxes = _box_xywh_to_xyxy(boxes)
|
74 |
-
elif in_fmt == "cxcywh":
|
75 |
-
boxes = _box_cxcywh_to_xyxy(boxes)
|
76 |
-
return boxes
|
77 |
-
|
78 |
-
|
79 |
-
def _box_xywh_to_xyxy(boxes):
|
80 |
-
"""
|
81 |
-
Converts bounding boxes from (x, y, w, h) format to (x1, y1, x2, y2) format.
|
82 |
-
(x, y) refers to top left of bounding box.
|
83 |
-
(w, h) refers to width and height of box.
|
84 |
-
Args:
|
85 |
-
boxes (ndarray[N, 4]): boxes in (x, y, w, h) which will be converted.
|
86 |
-
|
87 |
-
Returns:
|
88 |
-
boxes (ndarray[N, 4]): boxes in (x1, y1, x2, y2) format.
|
89 |
-
"""
|
90 |
-
x, y, w, h = np.split(boxes, 4, axis=-1)
|
91 |
-
x1 = x
|
92 |
-
y1 = y
|
93 |
-
x2 = x + w
|
94 |
-
y2 = y + h
|
95 |
-
converted_boxes = np.concatenate([x1, y1, x2, y2], axis=-1)
|
96 |
-
return converted_boxes
|
97 |
-
|
98 |
-
|
99 |
-
def _box_cxcywh_to_xyxy(boxes):
|
100 |
-
"""
|
101 |
-
Converts bounding boxes from (cx, cy, w, h) format to (x1, y1, x2, y2) format.
|
102 |
-
(cx, cy) refers to center of bounding box
|
103 |
-
(w, h) are width and height of bounding box
|
104 |
-
Args:
|
105 |
-
boxes (ndarray[N, 4]): boxes in (cx, cy, w, h) format which will be converted.
|
106 |
-
|
107 |
-
Returns:
|
108 |
-
boxes (ndarray[N, 4]): boxes in (x1, y1, x2, y2) format.
|
109 |
-
"""
|
110 |
-
cx, cy, w, h = np.split(boxes, 4, axis=-1)
|
111 |
-
x1 = cx - 0.5 * w
|
112 |
-
y1 = cy - 0.5 * h
|
113 |
-
x2 = cx + 0.5 * w
|
114 |
-
y2 = cy + 0.5 * h
|
115 |
-
converted_boxes = np.concatenate([x1, y1, x2, y2], axis=-1)
|
116 |
-
return converted_boxes
|
117 |
-
|
118 |
-
|
119 |
-
def _box_xyxy_to_xywh(boxes):
|
120 |
-
"""
|
121 |
-
Converts bounding boxes from (x1, y1, x2, y2) format to (x, y, w, h) format.
|
122 |
-
(x1, y1) refer to top left of bounding box
|
123 |
-
(x2, y2) refer to bottom right of bounding box
|
124 |
-
Args:
|
125 |
-
boxes (ndarray[N, 4]): boxes in (x1, y1, x2, y2) which will be converted.
|
126 |
-
|
127 |
-
Returns:
|
128 |
-
boxes (ndarray[N, 4]): boxes in (x, y, w, h) format.
|
129 |
-
"""
|
130 |
-
x1, y1, x2, y2 = np.split(boxes, 4, axis=-1)
|
131 |
-
w = x2 - x1
|
132 |
-
h = y2 - y1
|
133 |
-
converted_boxes = np.concatenate([x1, y1, w, h], axis=-1)
|
134 |
-
return converted_boxes
|
135 |
-
|
136 |
-
|
137 |
-
def _box_xyxy_to_cxcywh(boxes):
|
138 |
-
"""
|
139 |
-
Converts bounding boxes from (x1, y1, x2, y2) format to (cx, cy, w, h) format.
|
140 |
-
(x1, y1) refer to top left of bounding box
|
141 |
-
(x2, y2) refer to bottom right of bounding box
|
142 |
-
Args:
|
143 |
-
boxes (ndarray[N, 4]): boxes in (x1, y1, x2, y2) format which will be converted.
|
144 |
-
|
145 |
-
Returns:
|
146 |
-
boxes (ndarray[N, 4]): boxes in (cx, cy, w, h) format.
|
147 |
-
"""
|
148 |
-
x1, y1, x2, y2 = np.split(boxes, 4, axis=-1)
|
149 |
-
cx = (x1 + x2) / 2
|
150 |
-
cy = (y1 + y2) / 2
|
151 |
-
w = x2 - x1
|
152 |
-
h = y2 - y1
|
153 |
-
converted_boxes = np.concatenate([cx, cy, w, h], axis=-1)
|
154 |
-
return converted_boxes
|
155 |
-
|
156 |
-
def _fix_empty_arrays(boxes: np.ndarray) -> np.ndarray:
|
157 |
-
"""Empty tensors can cause problems, this methods corrects them."""
|
158 |
-
if boxes.size == 0 and boxes.ndim == 1:
|
159 |
-
return np.expand_dims(boxes, axis=0)
|
160 |
-
return boxes
|
161 |
-
|
162 |
-
def _input_validator(preds, targets, iou_type="bbox"):
|
163 |
-
"""Ensure the correct input format of `preds` and `targets`."""
|
164 |
-
if iou_type == "bbox":
|
165 |
-
item_val_name = "boxes"
|
166 |
-
elif iou_type == "segm":
|
167 |
-
item_val_name = "masks"
|
168 |
-
else:
|
169 |
-
raise Exception(f"IOU type {iou_type} is not supported")
|
170 |
-
|
171 |
-
if not isinstance(preds, (list, tuple)):
|
172 |
-
raise ValueError(
|
173 |
-
f"Expected argument `preds` to be of type list or tuple, but got {type(preds)}")
|
174 |
-
if not isinstance(targets, (list, tuple)):
|
175 |
-
raise ValueError(
|
176 |
-
f"Expected argument `targets` to be of type list or tuple, but got {type(targets)}")
|
177 |
-
if len(preds) != len(targets):
|
178 |
-
raise ValueError(
|
179 |
-
f"Expected argument `preds` and `targets` to have the same length, but got {len(preds)} and {len(targets)}"
|
180 |
-
)
|
181 |
-
|
182 |
-
for k in [item_val_name, "scores", "labels"]:
|
183 |
-
if any(k not in p for p in preds):
|
184 |
-
raise ValueError(
|
185 |
-
f"Expected all dicts in `preds` to contain the `{k}` key")
|
186 |
-
|
187 |
-
for k in [item_val_name, "labels"]:
|
188 |
-
if any(k not in p for p in targets):
|
189 |
-
raise ValueError(
|
190 |
-
f"Expected all dicts in `targets` to contain the `{k}` key")
|
191 |
-
|
192 |
-
if any(type(pred[item_val_name]) is not np.ndarray for pred in preds):
|
193 |
-
raise ValueError(
|
194 |
-
f"Expected all {item_val_name} in `preds` to be of type ndarray")
|
195 |
-
if any(type(pred["scores"]) is not np.ndarray for pred in preds):
|
196 |
-
raise ValueError(
|
197 |
-
"Expected all scores in `preds` to be of type ndarray")
|
198 |
-
if any(type(pred["labels"]) is not np.ndarray for pred in preds):
|
199 |
-
raise ValueError(
|
200 |
-
"Expected all labels in `preds` to be of type ndarray")
|
201 |
-
if any(type(target[item_val_name]) is not np.ndarray for target in targets):
|
202 |
-
raise ValueError(
|
203 |
-
f"Expected all {item_val_name} in `targets` to be of type ndarray")
|
204 |
-
if any(type(target["labels"]) is not np.ndarray for target in targets):
|
205 |
-
raise ValueError(
|
206 |
-
"Expected all labels in `targets` to be of type ndarray")
|
207 |
-
|
208 |
-
for i, item in enumerate(targets):
|
209 |
-
if item[item_val_name].shape[0] != item["labels"].shape[0]:
|
210 |
-
raise ValueError(
|
211 |
-
f"Input {item_val_name} and labels of sample {i} in targets have a"
|
212 |
-
f" different length (expected {item[item_val_name].shape[0]} labels, got {item['labels'].shape[0]})"
|
213 |
-
)
|
214 |
-
for i, item in enumerate(preds):
|
215 |
-
if not (item[item_val_name].shape[0] == item["labels"].shape[0] == item["scores"].shape[0]):
|
216 |
-
raise ValueError(
|
217 |
-
f"Input {item_val_name}, labels and scores of sample {i} in predictions have a"
|
218 |
-
f" different length (expected {item[item_val_name].shape[0]} labels and scores,"
|
219 |
-
f" got {item['labels'].shape[0]} labels and {item['scores'].shape[0]})"
|
220 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|