kevinconka commited on
Commit
e599283
1 Parent(s): 62d54d5

added seametrics as dependency

Browse files
det-metrics.py CHANGED
@@ -19,7 +19,7 @@ import evaluate
19
  import datasets
20
  import numpy as np
21
 
22
- from modified_coco.pr_rec_f1 import PrecisionRecallF1Support
23
 
24
 
25
  _CITATION = """\
 
19
  import datasets
20
  import numpy as np
21
 
22
+ from seametrics.detection import PrecisionRecallF1Support
23
 
24
 
25
  _CITATION = """\
modified_coco/cocoeval.py DELETED
@@ -1,693 +0,0 @@
1
- __author__ = 'tsungyi, [email protected]'
2
-
3
- # This is a modified version of the original cocoeval.py
4
- # In this version we are able to return the TP, FP, and FN values
5
- # along with the other default metrics.
6
-
7
- import numpy as np
8
- import datetime
9
- import time
10
- from collections import defaultdict
11
- from pycocotools import mask as maskUtils
12
- import copy
13
-
14
- class COCOeval:
15
- # Interface for evaluating detection on the Microsoft COCO dataset.
16
- #
17
- # The usage for CocoEval is as follows:
18
- # cocoGt=..., cocoDt=... # load dataset and results
19
- # E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object
20
- # E.params.recThrs = ...; # set parameters as desired
21
- # E.evaluate(); # run per image evaluation
22
- # E.accumulate(); # accumulate per image results
23
- # E.summarize(); # display summary metrics of results
24
- # For example usage see evalDemo.m and http://mscoco.org/.
25
- #
26
- # The evaluation parameters are as follows (defaults in brackets):
27
- # imgIds - [all] N img ids to use for evaluation
28
- # catIds - [all] K cat ids to use for evaluation
29
- # iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation
30
- # recThrs - [0:.01:1] R=101 recall thresholds for evaluation
31
- # areaRng - [...] A=4 object area ranges for evaluation
32
- # maxDets - [1 10 100] M=3 thresholds on max detections per image
33
- # iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints'
34
- # iouType replaced the now DEPRECATED useSegm parameter.
35
- # useCats - [1] if true use category labels for evaluation
36
- # Note: if useCats=0 category labels are ignored as in proposal scoring.
37
- # Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.
38
- #
39
- # evaluate(): evaluates detections on every image and every category and
40
- # concats the results into the "evalImgs" with fields:
41
- # dtIds - [1xD] id for each of the D detections (dt)
42
- # gtIds - [1xG] id for each of the G ground truths (gt)
43
- # dtMatches - [TxD] matching gt id at each IoU or 0
44
- # gtMatches - [TxG] matching dt id at each IoU or 0
45
- # dtScores - [1xD] confidence of each dt
46
- # gtIgnore - [1xG] ignore flag for each gt
47
- # dtIgnore - [TxD] ignore flag for each dt at each IoU
48
- #
49
- # accumulate(): accumulates the per-image, per-category evaluation
50
- # results in "evalImgs" into the dictionary "eval" with fields:
51
- # params - parameters used for evaluation
52
- # date - date evaluation was performed
53
- # counts - [T,R,K,A,M] parameter dimensions (see above)
54
- # precision - [TxRxKxAxM] precision for every evaluation setting
55
- # recall - [TxKxAxM] max recall for every evaluation setting
56
- # TP - [TxKxAxM] number of true positives for every eval setting [NEW]
57
- # FP - [TxKxAxM] number of false positives for every eval setting [NEW]
58
- # FN - [TxKxAxM] number of false negatives for every eval setting [NEW]
59
- # Note: precision and recall==-1 for settings with no gt objects.
60
- #
61
- # See also coco, mask, pycocoDemo, pycocoEvalDemo
62
- #
63
- # Microsoft COCO Toolbox. version 2.0
64
- # Data, paper, and tutorials available at: http://mscoco.org/
65
- # Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
66
- # Licensed under the Simplified BSD License [see coco/license.txt]
67
- def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'):
68
- '''
69
- Initialize CocoEval using coco APIs for gt and dt
70
- :param cocoGt: coco object with ground truth annotations
71
- :param cocoDt: coco object with detection results
72
- :return: None
73
- '''
74
- if not iouType:
75
- print('iouType not specified. use default iouType segm')
76
- self.cocoGt = cocoGt # ground truth COCO API
77
- self.cocoDt = cocoDt # detections COCO API
78
- self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements
79
- self.eval = {} # accumulated evaluation results
80
- self._gts = defaultdict(list) # gt for evaluation
81
- self._dts = defaultdict(list) # dt for evaluation
82
- self.params = Params(iouType=iouType) # parameters
83
- self._paramsEval = {} # parameters for evaluation
84
- self.stats = [] # result summarization
85
- self.ious = {} # ious between all gts and dts
86
- if not cocoGt is None:
87
- self.params.imgIds = sorted(cocoGt.getImgIds())
88
- self.params.catIds = sorted(cocoGt.getCatIds())
89
-
90
-
91
- def _prepare(self):
92
- '''
93
- Prepare ._gts and ._dts for evaluation based on params
94
- :return: None
95
- '''
96
- def _toMask(anns, coco):
97
- # modify ann['segmentation'] by reference
98
- for ann in anns:
99
- rle = coco.annToRLE(ann)
100
- ann['segmentation'] = rle
101
- p = self.params
102
- if p.useCats:
103
- gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
104
- dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds))
105
- else:
106
- gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
107
- dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
108
-
109
- # convert ground truth to mask if iouType == 'segm'
110
- if p.iouType == 'segm':
111
- _toMask(gts, self.cocoGt)
112
- _toMask(dts, self.cocoDt)
113
- # set ignore flag
114
- for gt in gts:
115
- gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0
116
- gt['ignore'] = 'iscrowd' in gt and gt['iscrowd']
117
- if p.iouType == 'keypoints':
118
- gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore']
119
- self._gts = defaultdict(list) # gt for evaluation
120
- self._dts = defaultdict(list) # dt for evaluation
121
- for gt in gts:
122
- self._gts[gt['image_id'], gt['category_id']].append(gt)
123
- for dt in dts:
124
- self._dts[dt['image_id'], dt['category_id']].append(dt)
125
- self.evalImgs = defaultdict(list) # per-image per-category evaluation results
126
- self.eval = {} # accumulated evaluation results
127
-
128
- def evaluate(self):
129
- '''
130
- Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
131
- :return: None
132
- '''
133
- tic = time.time()
134
- print('Running per image evaluation...')
135
- p = self.params
136
- # add backward compatibility if useSegm is specified in params
137
- if not p.useSegm is None:
138
- p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
139
- print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
140
- print('Evaluate annotation type *{}*'.format(p.iouType))
141
- p.imgIds = list(np.unique(p.imgIds))
142
- if p.useCats:
143
- p.catIds = list(np.unique(p.catIds))
144
- p.maxDets = sorted(p.maxDets)
145
- self.params=p
146
-
147
- self._prepare()
148
- # loop through images, area range, max detection number
149
- catIds = p.catIds if p.useCats else [-1]
150
-
151
- if p.iouType == 'segm' or p.iouType == 'bbox':
152
- computeIoU = self.computeIoU
153
- elif p.iouType == 'keypoints':
154
- computeIoU = self.computeOks
155
- self.ious = {(imgId, catId): computeIoU(imgId, catId) \
156
- for imgId in p.imgIds
157
- for catId in catIds}
158
-
159
- evaluateImg = self.evaluateImg
160
- maxDet = p.maxDets[-1]
161
- self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet)
162
- for catId in catIds
163
- for areaRng in p.areaRng
164
- for imgId in p.imgIds
165
- ]
166
- self._paramsEval = copy.deepcopy(self.params)
167
- toc = time.time()
168
- print('DONE (t={:0.2f}s).'.format(toc-tic))
169
-
170
- def computeIoU(self, imgId, catId):
171
- p = self.params
172
- if p.useCats:
173
- gt = self._gts[imgId,catId]
174
- dt = self._dts[imgId,catId]
175
- else:
176
- gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
177
- dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
178
- if len(gt) == 0 and len(dt) ==0:
179
- return []
180
- inds = np.argsort([-d['score'] for d in dt], kind='mergesort')
181
- dt = [dt[i] for i in inds]
182
- if len(dt) > p.maxDets[-1]:
183
- dt=dt[0:p.maxDets[-1]]
184
-
185
- if p.iouType == 'segm':
186
- g = [g['segmentation'] for g in gt]
187
- d = [d['segmentation'] for d in dt]
188
- elif p.iouType == 'bbox':
189
- g = [g['bbox'] for g in gt]
190
- d = [d['bbox'] for d in dt]
191
- else:
192
- raise Exception('unknown iouType for iou computation')
193
-
194
- # compute iou between each dt and gt region
195
- iscrowd = [int(o['iscrowd']) for o in gt]
196
- ious = maskUtils.iou(d,g,iscrowd)
197
- return ious
198
-
199
- def computeOks(self, imgId, catId):
200
- p = self.params
201
- # dimention here should be Nxm
202
- gts = self._gts[imgId, catId]
203
- dts = self._dts[imgId, catId]
204
- inds = np.argsort([-d['score'] for d in dts], kind='mergesort')
205
- dts = [dts[i] for i in inds]
206
- if len(dts) > p.maxDets[-1]:
207
- dts = dts[0:p.maxDets[-1]]
208
- # if len(gts) == 0 and len(dts) == 0:
209
- if len(gts) == 0 or len(dts) == 0:
210
- return []
211
- ious = np.zeros((len(dts), len(gts)))
212
- sigmas = p.kpt_oks_sigmas
213
- vars = (sigmas * 2)**2
214
- k = len(sigmas)
215
- # compute oks between each detection and ground truth object
216
- for j, gt in enumerate(gts):
217
- # create bounds for ignore regions(double the gt bbox)
218
- g = np.array(gt['keypoints'])
219
- xg = g[0::3]; yg = g[1::3]; vg = g[2::3]
220
- k1 = np.count_nonzero(vg > 0)
221
- bb = gt['bbox']
222
- x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2
223
- y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2
224
- for i, dt in enumerate(dts):
225
- d = np.array(dt['keypoints'])
226
- xd = d[0::3]; yd = d[1::3]
227
- if k1>0:
228
- # measure the per-keypoint distance if keypoints visible
229
- dx = xd - xg
230
- dy = yd - yg
231
- else:
232
- # measure minimum distance to keypoints in (x0,y0) & (x1,y1)
233
- z = np.zeros((k))
234
- dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0)
235
- dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0)
236
- e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2
237
- if k1 > 0:
238
- e=e[vg > 0]
239
- ious[i, j] = np.sum(np.exp(-e)) / e.shape[0]
240
- return ious
241
-
242
- def is_bbox1_inside_bbox2(self, bbox1, bbox2):
243
- '''
244
- Check if bbox1 is inside bbox2. Bbox is in the format [x, y, w, h]
245
- Returns:
246
- - True if bbox1 is inside bbox2, False otherwise
247
- - How much bbox1 is inside bbox2 (number between 0 and 1)
248
- '''
249
- x1_1, y1_1, w1_1, h1_1 = bbox1
250
- x1_2, y1_2, w1_2, h1_2 = bbox2
251
-
252
- # Convert xywh to (x, y, x2, y2) format
253
- x2_1, y2_1 = x1_1 + w1_1, y1_1 + h1_1
254
- x2_2, y2_2 = x1_2 + w1_2, y1_2 + h1_2
255
-
256
- # Calculate the coordinates of the intersection rectangle
257
- x_left, y_top = max(x1_1, x1_2), max(y1_1, y1_2)
258
- x_right, y_bottom = min(x2_1, x2_2), min(y2_1, y2_2)
259
- print(f"{x_left=}, {x_right=}, {y_top=}, {y_bottom=}")
260
- if x_right < x_left or y_bottom < y_top:
261
- return False, 0
262
-
263
- intersection_area = (x_right - x_left) * (y_bottom - y_top)
264
- print(f"{intersection_area=}")
265
- return True, intersection_area / (w1_1 * h1_1)
266
-
267
- def evaluateImg(self, imgId, catId, aRng, maxDet):
268
- '''
269
- perform evaluation for single category and image
270
- :return: dict (single image results)
271
- '''
272
- p = self.params
273
- if p.useCats:
274
- gt = self._gts[imgId,catId]
275
- dt = self._dts[imgId,catId]
276
- else:
277
- gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]]
278
- dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]]
279
- if len(gt) == 0 and len(dt) ==0:
280
- return None
281
-
282
- for g in gt:
283
- if g['ignore'] or (g['area']<aRng[0] or g['area']>aRng[1]):
284
- g['_ignore'] = 1
285
- else:
286
- g['_ignore'] = 0
287
-
288
- # sort dt highest score first, sort gt ignore last
289
- gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort')
290
- gt = [gt[i] for i in gtind]
291
- dtind = np.argsort([-d['score'] for d in dt], kind='mergesort')
292
- dt = [dt[i] for i in dtind[0:maxDet]]
293
- iscrowd = [int(o['iscrowd']) for o in gt]
294
- # load computed ious
295
- ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId]
296
-
297
- T = len(p.iouThrs)
298
- G = len(gt)
299
- D = len(dt)
300
- gtm = np.zeros((T,G))
301
- dtm = np.zeros((T,D))
302
- gtIg = np.array([g['_ignore'] for g in gt])
303
- dtIg = np.zeros((T,D))
304
- dtDup = np.zeros((T,D))
305
-
306
- if not len(ious)==0:
307
- for tind, t in enumerate(p.iouThrs):
308
- for dind, d in enumerate(dt):
309
- # information about best match so far (m=-1 -> unmatched)
310
- iou = min([t,1-1e-10])
311
- m = -1
312
- for gind, g in enumerate(gt):
313
- # if this gt already matched, iou>iouThr, and not a crowd
314
- # store detection as duplicate
315
- if gtm[tind,gind]>0 and ious[dind,gind]>t and not iscrowd[gind]:
316
- dtDup[tind, dind] = d['id']
317
- # if this gt already matched, and not a crowd, continue
318
- if gtm[tind,gind]>0 and not iscrowd[gind]:
319
- continue
320
- # if dt matched to reg gt, and on ignore gt, stop
321
- if m > -1 and gtIg[m]==0 and gtIg[gind]==1:
322
- break
323
- # continue to next gt unless better match made
324
- if ious[dind,gind] < iou:
325
- continue
326
- # if match successful and best so far, store appropriately
327
- iou=ious[dind,gind]
328
- m=gind
329
- # if match made store id of match for both dt and gt
330
- if m ==-1:
331
- continue
332
- dtIg[tind,dind] = gtIg[m]
333
- dtm[tind,dind] = gt[m]['id']
334
- gtm[tind,m] = d['id']
335
- # set unmatched detections outside of area range to ignore
336
- a = np.array([d['area']<aRng[0] or d['area']>aRng[1] for d in dt]).reshape((1, len(dt)))
337
- dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0)))
338
- # only consider duplicates if dets are inside the area range
339
- dtDup = np.logical_and(dtDup, np.logical_and(dtm==0, np.logical_not(np.repeat(a,T,0))))
340
- # false positive img (fpi) when all gt are ignored and there remain detections
341
- fpi = (gtIg.sum() == G) and np.any(dtIg == 0)
342
-
343
- # store results for given image and category
344
- return {
345
- 'image_id': imgId,
346
- 'category_id': catId,
347
- 'aRng': aRng,
348
- 'maxDet': maxDet,
349
- 'dtIds': [d['id'] for d in dt],
350
- 'gtIds': [g['id'] for g in gt],
351
- 'dtMatches': dtm,
352
- 'gtMatches': gtm,
353
- 'dtScores': [d['score'] for d in dt],
354
- 'gtIgnore': gtIg,
355
- 'dtIgnore': dtIg,
356
- 'dtDuplicates': dtDup,
357
- 'fpi': fpi,
358
- }
359
-
360
- def accumulate(self, p = None):
361
- '''
362
- Accumulate per image evaluation results and store the result in self.eval
363
- :param p: input params for evaluation
364
- :return: None
365
- '''
366
- print('Accumulating evaluation results...')
367
- tic = time.time()
368
- if not self.evalImgs:
369
- print('Please run evaluate() first')
370
- # allows input customized parameters
371
- if p is None:
372
- p = self.params
373
- p.catIds = p.catIds if p.useCats == 1 else [-1]
374
- T = len(p.iouThrs)
375
- R = len(p.recThrs)
376
- K = len(p.catIds) if p.useCats else 1
377
- A = len(p.areaRng)
378
- M = len(p.maxDets)
379
- precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories
380
- recall = -np.ones((T,K,A,M))
381
- scores = -np.ones((T,R,K,A,M))
382
- TP = -np.ones((T,K,A,M))
383
- FP = -np.ones((T,K,A,M))
384
- FN = -np.ones((T,K,A,M))
385
- duplicates = -np.ones((T,K,A,M))
386
- FPI = -np.ones((T,K,A,M))
387
-
388
- # matrix of arrays
389
- TPC = np.empty((T,K,A,M), dtype=object)
390
- FPC = np.empty((T,K,A,M), dtype=object)
391
- sorted_conf = np.empty((K,A,M), dtype=object)
392
-
393
- # create dictionary for future indexing
394
- _pe = self._paramsEval
395
- catIds = _pe.catIds if _pe.useCats else [-1]
396
- setK = set(catIds)
397
- setA = set(map(tuple, _pe.areaRng))
398
- setM = set(_pe.maxDets)
399
- setI = set(_pe.imgIds)
400
- # get inds to evaluate
401
- k_list = [n for n, k in enumerate(p.catIds) if k in setK]
402
- m_list = [m for n, m in enumerate(p.maxDets) if m in setM]
403
- a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA]
404
- i_list = [n for n, i in enumerate(p.imgIds) if i in setI]
405
- I0 = len(_pe.imgIds)
406
- A0 = len(_pe.areaRng)
407
- # retrieve E at each category, area range, and max number of detections
408
- for k, k0 in enumerate(k_list):
409
- Nk = k0*A0*I0
410
- for a, a0 in enumerate(a_list):
411
- Na = a0*I0
412
- for m, maxDet in enumerate(m_list):
413
- E = [self.evalImgs[Nk + Na + i] for i in i_list]
414
- E = [e for e in E if not e is None]
415
- if len(E) == 0:
416
- continue
417
- dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E])
418
-
419
- # different sorting method generates slightly different results.
420
- # mergesort is used to be consistent as Matlab implementation.
421
- inds = np.argsort(-dtScores, kind='mergesort')
422
- dtScoresSorted = dtScores[inds]
423
- sorted_conf[k,a,m] = dtScoresSorted.copy()
424
-
425
- dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds]
426
- dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds]
427
- dtDups = np.concatenate([e['dtDuplicates'][:,0:maxDet] for e in E], axis=1)[:,inds]
428
- gtIg = np.concatenate([e['gtIgnore'] for e in E])
429
- npig = np.count_nonzero(gtIg==0) # number of not ignored gt objects
430
- fpi = np.array([e['fpi'] for e in E]) # false positive image (no gt objects)
431
- # if npig == 0:
432
- # print("No ground truth objects, continuing...")
433
- # continue
434
- tps = np.logical_and( dtm, np.logical_not(dtIg) )
435
- fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) )
436
-
437
- tp_sum = np.cumsum(tps, axis=1).astype(dtype=float)
438
- fp_sum = np.cumsum(fps, axis=1).astype(dtype=float)
439
- fpi_sum = np.cumsum(fpi).astype(dtype=int)
440
- for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
441
- tp = np.array(tp)
442
- fp = np.array(fp)
443
- fn = npig - tp # difference between gt and tp
444
- nd = len(tp)
445
- rc = tp / npig if npig else [0]
446
- pr = tp / (fp+tp+np.spacing(1))
447
- q = np.zeros((R,))
448
- ss = np.zeros((R,)) #
449
-
450
- if nd:
451
- recall[t,k,a,m] = rc[-1]
452
- else:
453
- recall[t,k,a,m] = 0
454
-
455
- TP[t,k,a,m] = tp[-1] if nd else 0
456
- FP[t,k,a,m] = fp[-1] if nd else 0
457
- FN[t,k,a,m] = fn[-1] if nd else npig
458
- duplicates[t,k,a,m] = np.sum(dtDups[t, :])
459
- FPI[t,k,a,m] = fpi_sum[-1]
460
- TPC[t,k,a,m] = tp.copy()
461
- FPC[t,k,a,m] = fp.copy()
462
-
463
- # numpy is slow without cython optimization for accessing elements
464
- # use python array gets significant speed improvement
465
- pr = pr.tolist(); q = q.tolist()
466
-
467
- for i in range(nd-1, 0, -1):
468
- if pr[i] > pr[i-1]:
469
- pr[i-1] = pr[i]
470
-
471
- inds = np.searchsorted(rc, p.recThrs, side='left')
472
- try:
473
- for ri, pi in enumerate(inds):
474
- q[ri] = pr[pi]
475
- ss[ri] = dtScoresSorted[pi]
476
- except:
477
- pass
478
- precision[t,:,k,a,m] = np.array(q)
479
- scores[t,:,k,a,m] = np.array(ss)
480
- self.eval = {
481
- 'params': p,
482
- 'counts': [T, R, K, A, M],
483
- 'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
484
- 'precision': precision,
485
- 'recall': recall,
486
- 'scores': scores,
487
- 'TP': TP,
488
- 'FP': FP,
489
- 'FN': FN,
490
- 'duplicates': duplicates,
491
- 'support': TP + FN,
492
- 'FPI': FPI,
493
- 'TPC': TPC,
494
- 'FPC': FPC,
495
- 'sorted_conf': sorted_conf,
496
- }
497
- toc = time.time()
498
- print('DONE (t={:0.2f}s).'.format( toc-tic))
499
-
500
- def summarize(self):
501
- results = {}
502
- max_dets = self.params.maxDets[-1]
503
- min_iou = self.params.iouThrs[0]
504
-
505
- results['params'] = self.params
506
- results['eval'] = self.eval
507
- results['metrics'] = {}
508
-
509
- # for area_lbl in self.params.areaRngLbl:
510
- # results.append(self._summarize('ap', iouThr=min_iou,
511
- # areaRng=area_lbl, maxDets=max_dets))
512
-
513
- # for area_lbl in self.params.areaRngLbl:
514
- # results.append(self._summarize('ar', iouThr=min_iou,
515
- # areaRng=area_lbl, maxDets=max_dets))
516
-
517
- metrics_str = f"{'tp':>6}, {'fp':>6}, {'fn':>6}, {'dup':>6}, "
518
- metrics_str += f"{'pr':>5.2}, {'rec':>5.2}, {'f1':>5.2}, {'supp':>6}"
519
- metrics_str += f", {'fpi':>6}, {'nImgs':>6}"
520
- print('{:>51} {}'.format('METRIC', metrics_str))
521
- for area_lbl in self.params.areaRngLbl:
522
- results['metrics'][area_lbl] = self._summarize(
523
- 'pr_rec_f1',
524
- iouThr=min_iou,
525
- areaRng=area_lbl,
526
- maxDets=max_dets
527
- )
528
-
529
- return results
530
-
531
- def _summarize(self, metric_type='ap', iouThr=None, areaRng='all', maxDets=100):
532
- """
533
- Helper function to print and obtain metrics of types:
534
- - ap: average precision
535
- - ar: average recall
536
- - cf: tp, fp, fn, precision, recall, f1
537
- values from COCOeval object
538
- """
539
- def _summarize_ap_ar(ap=1, iouThr=None, areaRng='all', maxDets=100):
540
- iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
541
- titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
542
- typeStr = '(AP)' if ap == 1 else '(AR)'
543
- iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
544
- if iouThr is None else '{:0.2f}'.format(iouThr)
545
-
546
- aind = [i for i, aRng in enumerate(
547
- p.areaRngLbl) if aRng == areaRng]
548
- mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
549
-
550
- if ap == 1:
551
- # dimension of precision: [TxRxKxAxM]
552
- s = self.eval['precision']
553
- # IoU
554
- if iouThr is not None:
555
- t = np.where(iouThr == p.iouThrs)[0]
556
- s = s[t]
557
- s = s[:, :, :, aind, mind]
558
- else:
559
- # dimension of recall: [TxKxAxM]
560
- s = self.eval['recall']
561
- if iouThr is not None:
562
- t = np.where(iouThr == p.iouThrs)[0]
563
- s = s[t]
564
- s = s[:, :, aind, mind]
565
- if len(s[s > -1]) == 0:
566
- mean_s = -1
567
- else:
568
- mean_s = np.mean(s[s > -1])
569
- print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
570
- return mean_s
571
-
572
- def _summarize_pr_rec_f1(iouThr=None, areaRng='all', maxDets=100):
573
- aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
574
- mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
575
-
576
- # dimension of TP, FP, FN [TxKxAxM]
577
- tp = self.eval['TP']
578
- fp = self.eval['FP']
579
- fn = self.eval['FN']
580
- dup = self.eval['duplicates']
581
- fpi = self.eval['FPI']
582
- nImgs = len(p.imgIds)
583
-
584
- # filter by IoU
585
- if iouThr is not None:
586
- t = np.where(iouThr == p.iouThrs)[0]
587
- tp, fp, fn = tp[t], fp[t], fn[t]
588
- dup = dup[t]
589
- fpi = fpi[t]
590
-
591
- # filter by area and maxDets
592
- tp = tp[:, :, aind, mind].squeeze()
593
- fp = fp[:, :, aind, mind].squeeze()
594
- fn = fn[:, :, aind, mind].squeeze()
595
- dup = dup[:, :, aind, mind].squeeze()
596
- fpi = fpi[:, :, aind, mind].squeeze()
597
-
598
- # handle case where tp, fp, fn and dup are empty (no gt and no dt)
599
- if all([not np.any(m) for m in [tp, fp, fn, dup, fpi]]):
600
- tp, fp, fn, dup, fpi =[-1] * 5
601
- else:
602
- tp, fp, fn, dup, fpi = [e.item() for e in [tp, fp, fn, dup, fpi]]
603
-
604
- # compute precision, recall, f1
605
- if tp == -1 and fp == -1 and fn == -1:
606
- pr, rec, f1 = -1, -1, -1
607
- support, fpi = 0, 0
608
- else:
609
- pr = 0 if tp + fp == 0 else tp / (tp + fp)
610
- rec = 0 if tp + fn == 0 else tp / (tp + fn)
611
- f1 = 0 if pr + rec == 0 else 2 * pr * rec / (pr + rec)
612
- support = tp + fn
613
- # print(f"{tp=}, {fp=}, {fn=}, {dup=}, {pr=}, {rec=}, {f1=}, {support=}, {fpi=}")
614
-
615
- iStr = '@[ IoU={:<9} | area={:>9s} | maxDets={:>3d} ] = {}'
616
- iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
617
- if iouThr is None else '{:0.2f}'.format(iouThr)
618
- metrics_str = f"{tp:>6.0f}, {fp:>6.0f}, {fn:>6.0f}, {dup:>6.0f}, "
619
- metrics_str += f"{pr:>5.2f}, {rec:>5.2f}, {f1:>5.2f}, {support:>6.0f}, "
620
- metrics_str += f"{fpi:>6.0f}, {nImgs:>6.0f}"
621
- print(iStr.format(iouStr, areaRng, maxDets, metrics_str))
622
-
623
- return {
624
- 'range': p.areaRng[aind[0]],
625
- 'iouThr': iouStr,
626
- 'maxDets': maxDets,
627
- 'tp': int(tp),
628
- 'fp': int(fp),
629
- 'fn': int(fn),
630
- 'duplicates': int(dup),
631
- 'precision': pr,
632
- 'recall': rec,
633
- 'f1': f1,
634
- 'support': int(support),
635
- 'fpi': int(fpi),
636
- 'nImgs': nImgs,
637
- }
638
-
639
- p = self.params
640
- if metric_type in ['ap', 'ar']:
641
- ap = 1 if metric_type == 'ap' else 0
642
- return _summarize_ap_ar(ap, iouThr=iouThr, areaRng=areaRng, maxDets=maxDets)
643
-
644
- # return tp, fp, fn, pr, rec, f1, support, fpi, nImgs
645
- return _summarize_pr_rec_f1(iouThr=iouThr, areaRng=areaRng, maxDets=maxDets)
646
-
647
- def __str__(self):
648
- self.summarize()
649
-
650
- class Params:
651
- '''
652
- Params for coco evaluation api
653
- '''
654
- def setDetParams(self):
655
- self.imgIds = []
656
- self.catIds = []
657
- # np.arange causes trouble. the data point on arange is slightly larger than the true value
658
- self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
659
- self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
660
- self.maxDets = [1, 10, 100]
661
- self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
662
- self.areaRngLbl = ['all', 'small', 'medium', 'large']
663
- self.useCats = 1
664
-
665
- def setKpParams(self):
666
- self.imgIds = []
667
- self.catIds = []
668
- # np.arange causes trouble. the data point on arange is slightly larger than the true value
669
- self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
670
- self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True)
671
- self.maxDets = [20]
672
- self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]]
673
- self.areaRngLbl = ['all', 'medium', 'large']
674
- self.useCats = 1
675
- self.kpt_oks_sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0
676
-
677
- def __init__(self, iouType='segm'):
678
- if iouType == 'segm' or iouType == 'bbox':
679
- self.setDetParams()
680
- elif iouType == 'keypoints':
681
- self.setKpParams()
682
- else:
683
- raise Exception('iouType not supported')
684
- self.iouType = iouType
685
- # useSegm is deprecated
686
- self.useSegm = None
687
-
688
- def __repr__(self) -> str:
689
- return str(self.__dict__)
690
-
691
- def __iter__(self):
692
- return iter(self.__dict__.items())
693
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modified_coco/pr_rec_f1.py DELETED
@@ -1,620 +0,0 @@
1
- # Copyright The PyTorch Lightning team.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # NOTE: This metric is based on torchmetrics.detection.mean_ap and
16
- # then modified to support the evaluation of precision, recall, f1 and support
17
- # for object detection. It can also be used to evaluate the mean average precision
18
- # but some modifications are needed. Additionally, numpy is used instead of torch
19
-
20
- import contextlib
21
- import io
22
- import json
23
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
24
- from typing_extensions import Literal
25
- import numpy as np
26
- from modified_coco.utils import _fix_empty_arrays, _input_validator, box_convert
27
-
28
- try:
29
- import pycocotools.mask as mask_utils
30
- from pycocotools.coco import COCO
31
- # from pycocotools.cocoeval import COCOeval
32
- from modified_coco.cocoeval import COCOeval # use our own version of COCOeval
33
- except ImportError:
34
- raise ModuleNotFoundError(
35
- "`MAP` metric requires that `pycocotools` installed."
36
- " Please install with `pip install pycocotools`"
37
- )
38
-
39
- class PrecisionRecallF1Support:
40
- r"""Compute the Precision, Recall, F1 and Support scores for object detection.
41
-
42
- - Precision = :math:`\frac{TP}{TP + FP}`
43
- - Recall = :math:`\frac{TP}{TP + FN}`
44
- - F1 = :math:`\frac{2 * Precision * Recall}{Precision + Recall}`
45
- - Support = :math:`TP + FN`
46
-
47
- As input to ``forward`` and ``update`` the metric accepts the following input:
48
-
49
- - ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
50
- (each dictionary corresponds to a single image). Parameters that should be provided per dict:
51
- - boxes: (:class:`~np.ndarray`) of shape ``(num_boxes, 4)`` containing ``num_boxes``
52
- detection boxes of the format specified in the constructor. By default, this method expects
53
- ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
54
- - scores: :class:`~np.ndarray` of shape ``(num_boxes)`` containing detection scores
55
- for the boxes.
56
- - labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed detection
57
- classes for the boxes.
58
- - masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)`` containing
59
- boolean masks. Only required when `iou_type="segm"`.
60
-
61
- - ``target`` (:class:`~List`) A list consisting of dictionaries each containing the key-values
62
- (each dictionary corresponds to a single image). Parameters that should be provided per dict:
63
- - boxes: :class:`~np.ndarray` of shape ``(num_boxes, 4)`` containing ``num_boxes``
64
- ground truth boxes of the format specified in the constructor. By default, this method
65
- expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
66
- - labels: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0-indexed ground
67
- truth classes for the boxes.
68
- - masks: :class:`~torch.bool` of shape ``(num_boxes, image_height, image_width)``
69
- containing boolean masks. Only required when `iou_type="segm"`.
70
- - iscrowd: :class:`~np.ndarray` of shape ``(num_boxes)`` containing 0/1 values
71
- indicating whether the bounding box/masks indicate a crowd of objects. Value is optional,
72
- and if not provided it will automatically be set to 0.
73
- - area: :class:`~np.ndarray` of shape ``(num_boxes)`` containing the area of the
74
- object. Value if optional, and if not provided will be automatically calculated based
75
- on the bounding box/masks provided. Only affects when 'area_ranges' is provided.
76
-
77
- As output of ``forward`` and ``compute`` the metric returns the following output:
78
-
79
- - ``results``: A dictionary containing the following key-values:
80
-
81
- - ``params``: COCOeval parameters object
82
- - ``eval``: output of COCOeval.accumuate()
83
- - ``metrics``: A dictionary containing the following key-values for each area range:
84
- - ``area_range``: str containing the area range
85
- - ``iouThr``: str containing the IoU threshold
86
- - ``maxDets``: int containing the maximum number of detections
87
- - ``tp``: int containing the number of true positives
88
- - ``fp``: int containing the number of false positives
89
- - ``fn``: int containing the number of false negatives
90
- - ``precision``: float containing the precision
91
- - ``recall``: float containing the recall
92
- - ``f1``: float containing the f1 score
93
- - ``support``: int containing the support (tp + fn)
94
-
95
- .. note::
96
- This metric utilizes the official `pycocotools` implementation as its backend. This means that the metric
97
- requires you to have `pycocotools` installed. In addition we require `torchvision` version 0.8.0 or newer.
98
- Please install with ``pip install torchmetrics[detection]``.
99
-
100
- Args:
101
- box_format:
102
- Input format of given boxes. Supported formats are ``[xyxy, xywh, cxcywh]``.
103
- iou_type:
104
- Type of input (either masks or bounding-boxes) used for computing IOU.
105
- Supported IOU types are ``["bbox", "segm"]``. If using ``"segm"``, masks should be provided in input.
106
- iou_thresholds:
107
- IoU thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0.5,...,0.95]``
108
- with step ``0.05``. Else provide a list of floats.
109
- rec_thresholds:
110
- Recall thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0,...,1]``
111
- with step ``0.01``. Else provide a list of floats.
112
- max_detection_thresholds:
113
- Thresholds on max detections per image. If set to `None` will use thresholds ``[100]``.
114
- Else, please provide a list of ints.
115
- area_ranges:
116
- Area ranges for evaluation. If set to ``None`` it corresponds to the ranges ``[[0^2, 1e5^2]]``.
117
- Else, please provide a list of lists of length 2.
118
- area_ranges_labels:
119
- Labels for the area ranges. If set to ``None`` it corresponds to the labels ``["all"]``.
120
- Else, please provide a list of strings of the same length as ``area_ranges``.
121
- class_agnostic:
122
- If ``True`` will compute metrics globally. If ``False`` will compute metrics per class.
123
- Default: ``True`` (per class metrics are not supported yet)
124
- debug:
125
- If ``True`` will print the COCOEval summary to stdout.
126
- kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
127
-
128
- Raises:
129
- ValueError:
130
- If ``box_format`` is not one of ``"xyxy"``, ``"xywh"`` or ``"cxcywh"``
131
- ValueError:
132
- If ``iou_type`` is not one of ``"bbox"`` or ``"segm"``
133
- ValueError:
134
- If ``iou_thresholds`` is not None or a list of floats
135
- ValueError:
136
- If ``rec_thresholds`` is not None or a list of floats
137
- ValueError:
138
- If ``max_detection_thresholds`` is not None or a list of ints
139
- ValueError:
140
- If ``area_ranges`` is not None or a list of lists of length 2
141
- ValueError:
142
- If ``area_ranges_labels`` is not None or a list of strings
143
-
144
- Example:
145
- >>> import numpy as np
146
- >>> from metrics.detection import MeanAveragePrecision
147
- >>> preds = [
148
- ... dict(
149
- ... boxes=np.array([[258.0, 41.0, 606.0, 285.0]]),
150
- ... scores=np.array([0.536]),
151
- ... labels=np.array([0]),
152
- ... )
153
- ... ]
154
- >>> target = [
155
- ... dict(
156
- ... boxes=np.array([[214.0, 41.0, 562.0, 285.0]]),
157
- ... labels=np.array([0]),
158
- ... )
159
- ... ]
160
- >>> metric = PrecisionRecallF1Support()
161
- >>> metric.update(preds, target)
162
- >>> print(metric.compute())
163
- {'params': <metrics.detection.cocoeval.Params at 0x16dc99150>,
164
- 'eval': ... output of COCOeval.accumuate(),
165
- 'metrics': {'all': {'range': [0, 10000000000.0],
166
- 'iouThr': '0.50',
167
- 'maxDets': 100,
168
- 'tp': 1,
169
- 'fp': 0,
170
- 'fn': 0,
171
- 'precision': 1.0,
172
- 'recall': 1.0,
173
- 'f1': 1.0,
174
- 'support': 1}}}
175
- """
176
- is_differentiable: bool = False
177
- higher_is_better: Optional[bool] = True
178
- full_state_update: bool = True
179
- plot_lower_bound: float = 0.0
180
- plot_upper_bound: float = 1.0
181
-
182
- detections: List[np.ndarray]
183
- detection_scores: List[np.ndarray]
184
- detection_labels: List[np.ndarray]
185
- groundtruths: List[np.ndarray]
186
- groundtruth_labels: List[np.ndarray]
187
- groundtruth_crowds: List[np.ndarray]
188
- groundtruth_area: List[np.ndarray]
189
-
190
- def __init__(
191
- self,
192
- box_format: str = "xyxy",
193
- iou_type: Literal["bbox", "segm"] = "bbox",
194
- iou_thresholds: Optional[List[float]] = None,
195
- rec_thresholds: Optional[List[float]] = None,
196
- max_detection_thresholds: Optional[List[int]] = None,
197
- area_ranges: Optional[List[List[int]]] = None,
198
- area_ranges_labels: Optional[List[str]] = None,
199
- class_agnostic: bool = True,
200
- debug: bool = False,
201
- **kwargs: Any,
202
- ) -> None:
203
-
204
- allowed_box_formats = ("xyxy", "xywh", "cxcywh")
205
- if box_format not in allowed_box_formats:
206
- raise ValueError(
207
- f"Expected argument `box_format` to be one of {allowed_box_formats} but got {box_format}")
208
- self.box_format = box_format
209
-
210
- allowed_iou_types = ("segm", "bbox")
211
- if iou_type not in allowed_iou_types:
212
- raise ValueError(
213
- f"Expected argument `iou_type` to be one of {allowed_iou_types} but got {iou_type}")
214
- self.iou_type = iou_type
215
-
216
- if iou_thresholds is not None and not isinstance(iou_thresholds, list):
217
- raise ValueError(
218
- f"Expected argument `iou_thresholds` to either be `None` or a list of floats but got {iou_thresholds}"
219
- )
220
- self.iou_thresholds = iou_thresholds or np.linspace(
221
- 0.5, 0.95, round((0.95 - 0.5) / 0.05) + 1).tolist()
222
-
223
- if rec_thresholds is not None and not isinstance(rec_thresholds, list):
224
- raise ValueError(
225
- f"Expected argument `rec_thresholds` to either be `None` or a list of floats but got {rec_thresholds}"
226
- )
227
- self.rec_thresholds = rec_thresholds or np.linspace(
228
- 0.0, 1.00, round(1.00 / 0.01) + 1).tolist()
229
-
230
- if max_detection_thresholds is not None and not isinstance(max_detection_thresholds, list):
231
- raise ValueError(
232
- f"Expected argument `max_detection_thresholds` to either be `None` or a list of ints"
233
- f" but got {max_detection_thresholds}"
234
- )
235
- max_det_thr = np.sort(np.array(
236
- max_detection_thresholds or [100], dtype=np.uint))
237
- self.max_detection_thresholds = max_det_thr.tolist()
238
-
239
- # check area ranges
240
- if area_ranges is not None:
241
- if not isinstance(area_ranges, list):
242
- raise ValueError(
243
- f"Expected argument `area_ranges` to either be `None` or a list of lists but got {area_ranges}"
244
- )
245
- for area_range in area_ranges:
246
- if not isinstance(area_range, list) or len(area_range) != 2:
247
- raise ValueError(
248
- f"Expected argument `area_ranges` to be a list of lists of length 2 but got {area_ranges}"
249
- )
250
- self.area_ranges = area_ranges if area_ranges is not None else [
251
- [0**2, 1e5**2]]
252
-
253
- if area_ranges_labels is not None:
254
- if area_ranges is None:
255
- raise ValueError(
256
- "Expected argument `area_ranges_labels` to be `None` if `area_ranges` is not provided"
257
- )
258
- if not isinstance(area_ranges_labels, list):
259
- raise ValueError(
260
- f"Expected argument `area_ranges_labels` to either be `None` or a list of strings"
261
- f" but got {area_ranges_labels}"
262
- )
263
- if len(area_ranges_labels) != len(area_ranges):
264
- raise ValueError(
265
- f"Expected argument `area_ranges_labels` to be a list of length {len(area_ranges)}"
266
- f" but got {area_ranges_labels}"
267
- )
268
- self.area_ranges_labels = area_ranges_labels if area_ranges_labels is not None else [
269
- "all"]
270
-
271
- # if not isinstance(class_metrics, bool):
272
- # raise ValueError(
273
- # "Expected argument `class_metrics` to be a boolean")
274
- # self.class_metrics = class_metrics
275
-
276
- if not isinstance(class_agnostic, bool):
277
- raise ValueError(
278
- "Expected argument `class_agnostic` to be a boolean")
279
- self.class_agnostic = class_agnostic
280
-
281
- if not isinstance(debug, bool):
282
- raise ValueError("Expected argument `debug` to be a boolean")
283
- self.debug = debug
284
-
285
- self.detections = []
286
- self.detection_scores = []
287
- self.detection_labels = []
288
- self.groundtruths = []
289
- self.groundtruth_labels = []
290
- self.groundtruth_crowds = []
291
- self.groundtruth_area = []
292
-
293
- # self.add_state("detections", default=[], dist_reduce_fx=None)
294
- # self.add_state("detection_scores", default=[], dist_reduce_fx=None)
295
- # self.add_state("detection_labels", default=[], dist_reduce_fx=None)
296
- # self.add_state("groundtruths", default=[], dist_reduce_fx=None)
297
- # self.add_state("groundtruth_labels", default=[], dist_reduce_fx=None)
298
- # self.add_state("groundtruth_crowds", default=[], dist_reduce_fx=None)
299
- # self.add_state("groundtruth_area", default=[], dist_reduce_fx=None)
300
-
301
- def update(self, preds: List[Dict[str, np.ndarray]], target: List[Dict[str, np.ndarray]]) -> None:
302
- """Update metric state.
303
-
304
- Raises:
305
- ValueError:
306
- If ``preds`` is not of type (:class:`~List[Dict[str, np.ndarray]]`)
307
- ValueError:
308
- If ``target`` is not of type ``List[Dict[str, np.ndarray]]``
309
- ValueError:
310
- If ``preds`` and ``target`` are not of the same length
311
- ValueError:
312
- If any of ``preds.boxes``, ``preds.scores`` and ``preds.labels`` are not of the same length
313
- ValueError:
314
- If any of ``target.boxes`` and ``target.labels`` are not of the same length
315
- ValueError:
316
- If any box is not type float and of length 4
317
- ValueError:
318
- If any class is not type int and of length 1
319
- ValueError:
320
- If any score is not type float and of length 1
321
- """
322
- _input_validator(preds, target, iou_type=self.iou_type)
323
-
324
- for item in preds:
325
- detections = self._get_safe_item_values(item)
326
-
327
- self.detections.append(detections)
328
- self.detection_labels.append(item["labels"])
329
- self.detection_scores.append(item["scores"])
330
-
331
- for item in target:
332
- groundtruths = self._get_safe_item_values(item)
333
- self.groundtruths.append(groundtruths)
334
- self.groundtruth_labels.append(item["labels"])
335
- self.groundtruth_crowds.append(
336
- item.get("iscrowd", np.zeros_like(item["labels"])))
337
- self.groundtruth_area.append(
338
- item.get("area", np.zeros_like(item["labels"])))
339
-
340
- def compute(self) -> dict:
341
- """Computes the metric."""
342
- coco_target, coco_preds = COCO(), COCO()
343
-
344
- coco_target.dataset = self._get_coco_format(
345
- self.groundtruths, self.groundtruth_labels, crowds=self.groundtruth_crowds, area=self.groundtruth_area
346
- )
347
- coco_preds.dataset = self._get_coco_format(
348
- self.detections, self.detection_labels, scores=self.detection_scores)
349
-
350
- with contextlib.redirect_stdout(io.StringIO()) as f:
351
- coco_target.createIndex()
352
- coco_preds.createIndex()
353
-
354
- coco_eval = COCOeval(coco_target, coco_preds,
355
- iouType=self.iou_type)
356
- coco_eval.params.iouThrs = np.array(
357
- self.iou_thresholds, dtype=np.float64)
358
- coco_eval.params.recThrs = np.array(
359
- self.rec_thresholds, dtype=np.float64)
360
- coco_eval.params.maxDets = self.max_detection_thresholds
361
- coco_eval.params.areaRng = self.area_ranges
362
- coco_eval.params.areaRngLbl = self.area_ranges_labels
363
- coco_eval.params.useCats = 0 if self.class_agnostic else 1
364
-
365
- coco_eval.evaluate()
366
- coco_eval.accumulate()
367
-
368
- if self.debug:
369
- print(f.getvalue())
370
-
371
- metrics = coco_eval.summarize()
372
- return metrics
373
-
374
- @staticmethod
375
- def coco_to_np(
376
- coco_preds: str,
377
- coco_target: str,
378
- iou_type: Literal["bbox", "segm"] = "bbox",
379
- ) -> Tuple[List[Dict[str, np.ndarray]], List[Dict[str, np.ndarray]]]:
380
- """Utility function for converting .json coco format files to the input format of this metric.
381
-
382
- The function accepts a file for the predictions and a file for the target in coco format and converts them to
383
- a list of dictionaries containing the boxes, labels and scores in the input format of this metric.
384
-
385
- Args:
386
- coco_preds: Path to the json file containing the predictions in coco format
387
- coco_target: Path to the json file containing the targets in coco format
388
- iou_type: Type of input, either `bbox` for bounding boxes or `segm` for segmentation masks
389
-
390
- Returns:
391
- preds: List of dictionaries containing the predictions in the input format of this metric
392
- target: List of dictionaries containing the targets in the input format of this metric
393
-
394
- Example:
395
- >>> # File formats are defined at https://cocodataset.org/#format-data
396
- >>> # Example files can be found at
397
- >>> # https://github.com/cocodataset/cocoapi/tree/master/results
398
- >>> from torchmetrics.detection import MeanAveragePrecision
399
- >>> preds, target = MeanAveragePrecision.coco_to_tm(
400
- ... "instances_val2014_fakebbox100_results.json.json",
401
- ... "val2014_fake_eval_res.txt.json"
402
- ... iou_type="bbox"
403
- ... ) # doctest: +SKIP
404
-
405
- """
406
- with contextlib.redirect_stdout(io.StringIO()):
407
- gt = COCO(coco_target)
408
- dt = gt.loadRes(coco_preds)
409
-
410
- gt_dataset = gt.dataset["annotations"]
411
- dt_dataset = dt.dataset["annotations"]
412
-
413
- target = {}
414
- for t in gt_dataset:
415
- if t["image_id"] not in target:
416
- target[t["image_id"]] = {
417
- "boxes" if iou_type == "bbox" else "masks": [],
418
- "labels": [],
419
- "iscrowd": [],
420
- "area": [],
421
- }
422
- if iou_type == "bbox":
423
- target[t["image_id"]]["boxes"].append(t["bbox"])
424
- else:
425
- target[t["image_id"]]["masks"].append(gt.annToMask(t))
426
- target[t["image_id"]]["labels"].append(t["category_id"])
427
- target[t["image_id"]]["iscrowd"].append(t["iscrowd"])
428
- target[t["image_id"]]["area"].append(t["area"])
429
-
430
- preds = {}
431
- for p in dt_dataset:
432
- if p["image_id"] not in preds:
433
- preds[p["image_id"]] = {
434
- "boxes" if iou_type == "bbox" else "masks": [], "scores": [], "labels": []}
435
- if iou_type == "bbox":
436
- preds[p["image_id"]]["boxes"].append(p["bbox"])
437
- else:
438
- preds[p["image_id"]]["masks"].append(gt.annToMask(p))
439
- preds[p["image_id"]]["scores"].append(p["score"])
440
- preds[p["image_id"]]["labels"].append(p["category_id"])
441
- for k in target: # add empty predictions for images without predictions
442
- if k not in preds:
443
- preds[k] = {"boxes" if iou_type ==
444
- "bbox" else "masks": [], "scores": [], "labels": []}
445
-
446
- batched_preds, batched_target = [], []
447
- for key in target:
448
- name = "boxes" if iou_type == "bbox" else "masks"
449
- batched_preds.append(
450
- {
451
- name: np.array(
452
- np.array(preds[key]["boxes"]), dtype=np.float32)
453
- if iou_type == "bbox"
454
- else np.array(np.array(preds[key]["masks"]), dtype=np.uint8),
455
- "scores": np.array(preds[key]["scores"], dtype=np.float32),
456
- "labels": np.array(preds[key]["labels"], dtype=np.int32),
457
- }
458
- )
459
- batched_target.append(
460
- {
461
- name: np.array(
462
- target[key]["boxes"], dtype=np.float32)
463
- if iou_type == "bbox"
464
- else np.array(np.array(target[key]["masks"]), dtype=np.uint8),
465
- "labels": np.array(target[key]["labels"], dtype=np.int32),
466
- "iscrowd": np.array(target[key]["iscrowd"], dtype=np.int32),
467
- "area": np.array(target[key]["area"], dtype=np.float32),
468
- }
469
- )
470
-
471
- return batched_preds, batched_target
472
-
473
- def np_to_coco(self, name: str = "np_map_input") -> None:
474
- """Utility function for converting the input for this metric to coco format and saving it to a json file.
475
-
476
- This function should be used after calling `.update(...)` or `.forward(...)` on all data that should be written
477
- to the file, as the input is then internally cached. The function then converts to information to coco format
478
- a writes it to json files.
479
-
480
- Args:
481
- name: Name of the output file, which will be appended with "_preds.json" and "_target.json"
482
-
483
- Example:
484
- >>> import numpy as np
485
- >>> from metrics.detection import MeanAveragePrecision
486
- >>> preds = [
487
- ... dict(
488
- ... boxes=np.array([[258.0, 41.0, 606.0, 285.0]]),
489
- ... scores=np.array([0.536]),
490
- ... labels=np.array([0]),
491
- ... )
492
- ... ]
493
- >>> target = [
494
- ... dict(
495
- ... boxes=np.array([[214.0, 41.0, 562.0, 285.0]]),
496
- ... labels=np.array([0]),
497
- ... )
498
- ... ]
499
- >>> metric = PrecisionRecallF1Support()
500
- >>> metric.update(preds, target)
501
- >>> metric.np_to_coco("np_map_input") # doctest: +SKIP
502
-
503
- """
504
- target_dataset = self._get_coco_format(
505
- self.groundtruths, self.groundtruth_labels)
506
- preds_dataset = self._get_coco_format(
507
- self.detections, self.detection_labels, self.detection_scores)
508
-
509
- preds_json = json.dumps(preds_dataset["annotations"], indent=4)
510
- target_json = json.dumps(target_dataset, indent=4)
511
-
512
- with open(f"{name}_preds.json", "w") as f:
513
- f.write(preds_json)
514
-
515
- with open(f"{name}_target.json", "w") as f:
516
- f.write(target_json)
517
-
518
- def _get_safe_item_values(self, item: Dict[str, Any]) -> Union[np.ndarray, Tuple]:
519
- """Convert and return the boxes or masks from the item depending on the iou_type.
520
-
521
- Args:
522
- item: input dictionary containing the boxes or masks
523
-
524
- Returns:
525
- boxes or masks depending on the iou_type
526
-
527
- """
528
- if self.iou_type == "bbox":
529
- boxes = _fix_empty_arrays(item["boxes"])
530
- if boxes.size > 0:
531
- boxes = box_convert(
532
- boxes, in_fmt=self.box_format, out_fmt="xywh")
533
- return boxes
534
- if self.iou_type == "segm":
535
- masks = []
536
- for i in item["masks"]:
537
- rle = mask_utils.encode(np.asfortranarray(i))
538
- masks.append((tuple(rle["size"]), rle["counts"]))
539
- return tuple(masks)
540
- raise Exception(f"IOU type {self.iou_type} is not supported")
541
-
542
- def _get_classes(self) -> List:
543
- """Return a list of unique classes found in ground truth and detection data."""
544
- all_labels = np.concatenate(
545
- self.detection_labels + self.groundtruth_labels)
546
- unique_classes = np.unique(all_labels)
547
- return unique_classes.tolist()
548
-
549
- def _get_coco_format(
550
- self,
551
- boxes: List[np.ndarray],
552
- labels: List[np.ndarray],
553
- scores: Optional[List[np.ndarray]] = None,
554
- crowds: Optional[List[np.ndarray]] = None,
555
- area: Optional[List[np.ndarray]] = None,
556
- ) -> Dict:
557
- """Transforms and returns all cached targets or predictions in COCO format.
558
-
559
- Format is defined at https://cocodataset.org/#format-data
560
- """
561
- images = []
562
- annotations = []
563
- annotation_id = 1 # has to start with 1, otherwise COCOEval results are wrong
564
-
565
- for image_id, (image_boxes, image_labels) in enumerate(zip(boxes, labels)):
566
- if self.iou_type == "segm" and len(image_boxes) == 0:
567
- continue
568
-
569
- if self.iou_type == "bbox":
570
- image_boxes = image_boxes.tolist()
571
- image_labels = image_labels.tolist()
572
-
573
- images.append({"id": image_id})
574
- if self.iou_type == "segm":
575
- images[-1]["height"], images[-1]["width"] = image_boxes[0][0][0], image_boxes[0][0][1]
576
-
577
- for k, (image_box, image_label) in enumerate(zip(image_boxes, image_labels)):
578
- if self.iou_type == "bbox" and len(image_box) != 4:
579
- raise ValueError(
580
- f"Invalid input box of sample {image_id}, element {k} (expected 4 values, got {len(image_box)})"
581
- )
582
-
583
- if not isinstance(image_label, int):
584
- raise ValueError(
585
- f"Invalid input class of sample {image_id}, element {k}"
586
- f" (expected value of type integer, got type {type(image_label)})"
587
- )
588
-
589
- stat = image_box if self.iou_type == "bbox" else {
590
- "size": image_box[0], "counts": image_box[1]}
591
-
592
- if area is not None and area[image_id][k].tolist() > 0:
593
- area_stat = area[image_id][k].tolist()
594
- else:
595
- area_stat = image_box[2] * \
596
- image_box[3] if self.iou_type == "bbox" else mask_utils.area(
597
- stat)
598
-
599
- annotation = {
600
- "id": annotation_id,
601
- "image_id": image_id,
602
- "bbox" if self.iou_type == "bbox" else "segmentation": stat,
603
- "area": area_stat,
604
- "category_id": image_label,
605
- "iscrowd": crowds[image_id][k].tolist() if crowds is not None else 0,
606
- }
607
-
608
- if scores is not None:
609
- score = scores[image_id][k].tolist()
610
- if not isinstance(score, float):
611
- raise ValueError(
612
- f"Invalid input score of sample {image_id}, element {k}"
613
- f" (expected value of type float, got type {type(score)})"
614
- )
615
- annotation["score"] = score
616
- annotations.append(annotation)
617
- annotation_id += 1
618
-
619
- classes = [{"id": i, "name": str(i)} for i in self._get_classes()]
620
- return {"images": images, "annotations": annotations, "categories": classes}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modified_coco/utils.py DELETED
@@ -1,220 +0,0 @@
1
- import numpy as np
2
-
3
- def box_denormalize(boxes: np.ndarray, img_w: int, img_h: int) -> np.ndarray:
4
- """
5
- Denormalizes boxes from [0, 1] to [0, img_w] and [0, img_h].
6
- Args:
7
- boxes (Tensor[N, 4]): boxes which will be denormalized.
8
- img_w (int): Width of image.
9
- img_h (int): Height of image.
10
-
11
- Returns:
12
- Tensor[N, 4]: Denormalized boxes.
13
- """
14
- if boxes.size == 0:
15
- return boxes
16
-
17
- # check if boxes are normalized
18
- if np.any(boxes > 1.0):
19
- return boxes
20
-
21
- boxes[:, 0::2] *= img_w
22
- boxes[:, 1::2] *= img_h
23
- return boxes
24
-
25
-
26
- def box_convert(boxes: np.ndarray, in_fmt: str, out_fmt: str) -> np.ndarray:
27
- """
28
- Converts boxes from given in_fmt to out_fmt.
29
- Supported in_fmt and out_fmt are:
30
-
31
- 'xyxy': boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.
32
- This is the format that torchvision utilities expect.
33
-
34
- 'xywh' : boxes are represented via corner, width and height, x1, y2 being top left, w, h being width and height.
35
-
36
- 'cxcywh' : boxes are represented via centre, width and height, cx, cy being center of box, w, h
37
- being width and height.
38
-
39
- Args:
40
- boxes (Tensor[N, 4]): boxes which will be converted.
41
- in_fmt (str): Input format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh'].
42
- out_fmt (str): Output format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh']
43
-
44
- Returns:
45
- Tensor[N, 4]: Boxes into converted format.
46
- """
47
- if boxes.size == 0:
48
- return boxes
49
-
50
- allowed_fmts = ("xyxy", "xywh", "cxcywh")
51
- if in_fmt not in allowed_fmts or out_fmt not in allowed_fmts:
52
- raise ValueError(
53
- "Unsupported Bounding Box Conversions for given in_fmt and out_fmt")
54
-
55
- if in_fmt == out_fmt:
56
- return boxes.copy()
57
-
58
- if in_fmt != "xyxy" and out_fmt != "xyxy":
59
- # convert to xyxy and change in_fmt xyxy
60
- if in_fmt == "xywh":
61
- boxes = _box_xywh_to_xyxy(boxes)
62
- elif in_fmt == "cxcywh":
63
- boxes = _box_cxcywh_to_xyxy(boxes)
64
- in_fmt = "xyxy"
65
-
66
- if in_fmt == "xyxy":
67
- if out_fmt == "xywh":
68
- boxes = _box_xyxy_to_xywh(boxes)
69
- elif out_fmt == "cxcywh":
70
- boxes = _box_xyxy_to_cxcywh(boxes)
71
- elif out_fmt == "xyxy":
72
- if in_fmt == "xywh":
73
- boxes = _box_xywh_to_xyxy(boxes)
74
- elif in_fmt == "cxcywh":
75
- boxes = _box_cxcywh_to_xyxy(boxes)
76
- return boxes
77
-
78
-
79
- def _box_xywh_to_xyxy(boxes):
80
- """
81
- Converts bounding boxes from (x, y, w, h) format to (x1, y1, x2, y2) format.
82
- (x, y) refers to top left of bounding box.
83
- (w, h) refers to width and height of box.
84
- Args:
85
- boxes (ndarray[N, 4]): boxes in (x, y, w, h) which will be converted.
86
-
87
- Returns:
88
- boxes (ndarray[N, 4]): boxes in (x1, y1, x2, y2) format.
89
- """
90
- x, y, w, h = np.split(boxes, 4, axis=-1)
91
- x1 = x
92
- y1 = y
93
- x2 = x + w
94
- y2 = y + h
95
- converted_boxes = np.concatenate([x1, y1, x2, y2], axis=-1)
96
- return converted_boxes
97
-
98
-
99
- def _box_cxcywh_to_xyxy(boxes):
100
- """
101
- Converts bounding boxes from (cx, cy, w, h) format to (x1, y1, x2, y2) format.
102
- (cx, cy) refers to center of bounding box
103
- (w, h) are width and height of bounding box
104
- Args:
105
- boxes (ndarray[N, 4]): boxes in (cx, cy, w, h) format which will be converted.
106
-
107
- Returns:
108
- boxes (ndarray[N, 4]): boxes in (x1, y1, x2, y2) format.
109
- """
110
- cx, cy, w, h = np.split(boxes, 4, axis=-1)
111
- x1 = cx - 0.5 * w
112
- y1 = cy - 0.5 * h
113
- x2 = cx + 0.5 * w
114
- y2 = cy + 0.5 * h
115
- converted_boxes = np.concatenate([x1, y1, x2, y2], axis=-1)
116
- return converted_boxes
117
-
118
-
119
- def _box_xyxy_to_xywh(boxes):
120
- """
121
- Converts bounding boxes from (x1, y1, x2, y2) format to (x, y, w, h) format.
122
- (x1, y1) refer to top left of bounding box
123
- (x2, y2) refer to bottom right of bounding box
124
- Args:
125
- boxes (ndarray[N, 4]): boxes in (x1, y1, x2, y2) which will be converted.
126
-
127
- Returns:
128
- boxes (ndarray[N, 4]): boxes in (x, y, w, h) format.
129
- """
130
- x1, y1, x2, y2 = np.split(boxes, 4, axis=-1)
131
- w = x2 - x1
132
- h = y2 - y1
133
- converted_boxes = np.concatenate([x1, y1, w, h], axis=-1)
134
- return converted_boxes
135
-
136
-
137
- def _box_xyxy_to_cxcywh(boxes):
138
- """
139
- Converts bounding boxes from (x1, y1, x2, y2) format to (cx, cy, w, h) format.
140
- (x1, y1) refer to top left of bounding box
141
- (x2, y2) refer to bottom right of bounding box
142
- Args:
143
- boxes (ndarray[N, 4]): boxes in (x1, y1, x2, y2) format which will be converted.
144
-
145
- Returns:
146
- boxes (ndarray[N, 4]): boxes in (cx, cy, w, h) format.
147
- """
148
- x1, y1, x2, y2 = np.split(boxes, 4, axis=-1)
149
- cx = (x1 + x2) / 2
150
- cy = (y1 + y2) / 2
151
- w = x2 - x1
152
- h = y2 - y1
153
- converted_boxes = np.concatenate([cx, cy, w, h], axis=-1)
154
- return converted_boxes
155
-
156
- def _fix_empty_arrays(boxes: np.ndarray) -> np.ndarray:
157
- """Empty tensors can cause problems, this methods corrects them."""
158
- if boxes.size == 0 and boxes.ndim == 1:
159
- return np.expand_dims(boxes, axis=0)
160
- return boxes
161
-
162
- def _input_validator(preds, targets, iou_type="bbox"):
163
- """Ensure the correct input format of `preds` and `targets`."""
164
- if iou_type == "bbox":
165
- item_val_name = "boxes"
166
- elif iou_type == "segm":
167
- item_val_name = "masks"
168
- else:
169
- raise Exception(f"IOU type {iou_type} is not supported")
170
-
171
- if not isinstance(preds, (list, tuple)):
172
- raise ValueError(
173
- f"Expected argument `preds` to be of type list or tuple, but got {type(preds)}")
174
- if not isinstance(targets, (list, tuple)):
175
- raise ValueError(
176
- f"Expected argument `targets` to be of type list or tuple, but got {type(targets)}")
177
- if len(preds) != len(targets):
178
- raise ValueError(
179
- f"Expected argument `preds` and `targets` to have the same length, but got {len(preds)} and {len(targets)}"
180
- )
181
-
182
- for k in [item_val_name, "scores", "labels"]:
183
- if any(k not in p for p in preds):
184
- raise ValueError(
185
- f"Expected all dicts in `preds` to contain the `{k}` key")
186
-
187
- for k in [item_val_name, "labels"]:
188
- if any(k not in p for p in targets):
189
- raise ValueError(
190
- f"Expected all dicts in `targets` to contain the `{k}` key")
191
-
192
- if any(type(pred[item_val_name]) is not np.ndarray for pred in preds):
193
- raise ValueError(
194
- f"Expected all {item_val_name} in `preds` to be of type ndarray")
195
- if any(type(pred["scores"]) is not np.ndarray for pred in preds):
196
- raise ValueError(
197
- "Expected all scores in `preds` to be of type ndarray")
198
- if any(type(pred["labels"]) is not np.ndarray for pred in preds):
199
- raise ValueError(
200
- "Expected all labels in `preds` to be of type ndarray")
201
- if any(type(target[item_val_name]) is not np.ndarray for target in targets):
202
- raise ValueError(
203
- f"Expected all {item_val_name} in `targets` to be of type ndarray")
204
- if any(type(target["labels"]) is not np.ndarray for target in targets):
205
- raise ValueError(
206
- "Expected all labels in `targets` to be of type ndarray")
207
-
208
- for i, item in enumerate(targets):
209
- if item[item_val_name].shape[0] != item["labels"].shape[0]:
210
- raise ValueError(
211
- f"Input {item_val_name} and labels of sample {i} in targets have a"
212
- f" different length (expected {item[item_val_name].shape[0]} labels, got {item['labels'].shape[0]})"
213
- )
214
- for i, item in enumerate(preds):
215
- if not (item[item_val_name].shape[0] == item["labels"].shape[0] == item["scores"].shape[0]):
216
- raise ValueError(
217
- f"Input {item_val_name}, labels and scores of sample {i} in predictions have a"
218
- f" different length (expected {item[item_val_name].shape[0]} labels and scores,"
219
- f" got {item['labels'].shape[0]} labels and {item['scores'].shape[0]})"
220
- )