__author__ = 'tsungyi, kevin.serrano@sea.ai' # This is a modified version of the original cocoeval.py # In this version we are able to return the TP, FP, and FN values # along with the other default metrics. import numpy as np import datetime import time from collections import defaultdict from pycocotools import mask as maskUtils import copy class COCOeval: # Interface for evaluating detection on the Microsoft COCO dataset. # # The usage for CocoEval is as follows: # cocoGt=..., cocoDt=... # load dataset and results # E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object # E.params.recThrs = ...; # set parameters as desired # E.evaluate(); # run per image evaluation # E.accumulate(); # accumulate per image results # E.summarize(); # display summary metrics of results # For example usage see evalDemo.m and http://mscoco.org/. # # The evaluation parameters are as follows (defaults in brackets): # imgIds - [all] N img ids to use for evaluation # catIds - [all] K cat ids to use for evaluation # iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation # recThrs - [0:.01:1] R=101 recall thresholds for evaluation # areaRng - [...] A=4 object area ranges for evaluation # maxDets - [1 10 100] M=3 thresholds on max detections per image # iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints' # iouType replaced the now DEPRECATED useSegm parameter. # useCats - [1] if true use category labels for evaluation # Note: if useCats=0 category labels are ignored as in proposal scoring. # Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified. # # evaluate(): evaluates detections on every image and every category and # concats the results into the "evalImgs" with fields: # dtIds - [1xD] id for each of the D detections (dt) # gtIds - [1xG] id for each of the G ground truths (gt) # dtMatches - [TxD] matching gt id at each IoU or 0 # gtMatches - [TxG] matching dt id at each IoU or 0 # dtScores - [1xD] confidence of each dt # gtIgnore - [1xG] ignore flag for each gt # dtIgnore - [TxD] ignore flag for each dt at each IoU # # accumulate(): accumulates the per-image, per-category evaluation # results in "evalImgs" into the dictionary "eval" with fields: # params - parameters used for evaluation # date - date evaluation was performed # counts - [T,R,K,A,M] parameter dimensions (see above) # precision - [TxRxKxAxM] precision for every evaluation setting # recall - [TxKxAxM] max recall for every evaluation setting # TP - [TxKxAxM] number of true positives for every eval setting [NEW] # FP - [TxKxAxM] number of false positives for every eval setting [NEW] # FN - [TxKxAxM] number of false negatives for every eval setting [NEW] # Note: precision and recall==-1 for settings with no gt objects. # # See also coco, mask, pycocoDemo, pycocoEvalDemo # # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by Piotr Dollar and Tsung-Yi Lin, 2015. # Licensed under the Simplified BSD License [see coco/license.txt] def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'): ''' Initialize CocoEval using coco APIs for gt and dt :param cocoGt: coco object with ground truth annotations :param cocoDt: coco object with detection results :return: None ''' if not iouType: print('iouType not specified. use default iouType segm') self.cocoGt = cocoGt # ground truth COCO API self.cocoDt = cocoDt # detections COCO API self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements self.eval = {} # accumulated evaluation results self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation self.params = Params(iouType=iouType) # parameters self._paramsEval = {} # parameters for evaluation self.stats = [] # result summarization self.ious = {} # ious between all gts and dts if not cocoGt is None: self.params.imgIds = sorted(cocoGt.getImgIds()) self.params.catIds = sorted(cocoGt.getCatIds()) def _prepare(self): ''' Prepare ._gts and ._dts for evaluation based on params :return: None ''' def _toMask(anns, coco): # modify ann['segmentation'] by reference for ann in anns: rle = coco.annToRLE(ann) ann['segmentation'] = rle p = self.params if p.useCats: gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)) else: gts=self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds)) dts=self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds)) # convert ground truth to mask if iouType == 'segm' if p.iouType == 'segm': _toMask(gts, self.cocoGt) _toMask(dts, self.cocoDt) # set ignore flag for gt in gts: gt['ignore'] = gt['ignore'] if 'ignore' in gt else 0 gt['ignore'] = 'iscrowd' in gt and gt['iscrowd'] if p.iouType == 'keypoints': gt['ignore'] = (gt['num_keypoints'] == 0) or gt['ignore'] self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation for gt in gts: self._gts[gt['image_id'], gt['category_id']].append(gt) for dt in dts: self._dts[dt['image_id'], dt['category_id']].append(dt) self.evalImgs = defaultdict(list) # per-image per-category evaluation results self.eval = {} # accumulated evaluation results def evaluate(self): ''' Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None ''' tic = time.time() print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if not p.useSegm is None: p.iouType = 'segm' if p.useSegm == 1 else 'bbox' print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params=p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == 'segm' or p.iouType == 'bbox': computeIoU = self.computeIoU elif p.iouType == 'keypoints': computeIoU = self.computeOks self.ious = {(imgId, catId): computeIoU(imgId, catId) \ for imgId in p.imgIds for catId in catIds} evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] self._paramsEval = copy.deepcopy(self.params) toc = time.time() print('DONE (t={:0.2f}s).'.format(toc-tic)) def computeIoU(self, imgId, catId): p = self.params if p.useCats: gt = self._gts[imgId,catId] dt = self._dts[imgId,catId] else: gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] if len(gt) == 0 and len(dt) ==0: return [] inds = np.argsort([-d['score'] for d in dt], kind='mergesort') dt = [dt[i] for i in inds] if len(dt) > p.maxDets[-1]: dt=dt[0:p.maxDets[-1]] if p.iouType == 'segm': g = [g['segmentation'] for g in gt] d = [d['segmentation'] for d in dt] elif p.iouType == 'bbox': g = [g['bbox'] for g in gt] d = [d['bbox'] for d in dt] else: raise Exception('unknown iouType for iou computation') # compute iou between each dt and gt region iscrowd = [int(o['iscrowd']) for o in gt] ious = maskUtils.iou(d,g,iscrowd) return ious def computeOks(self, imgId, catId): p = self.params # dimention here should be Nxm gts = self._gts[imgId, catId] dts = self._dts[imgId, catId] inds = np.argsort([-d['score'] for d in dts], kind='mergesort') dts = [dts[i] for i in inds] if len(dts) > p.maxDets[-1]: dts = dts[0:p.maxDets[-1]] # if len(gts) == 0 and len(dts) == 0: if len(gts) == 0 or len(dts) == 0: return [] ious = np.zeros((len(dts), len(gts))) sigmas = p.kpt_oks_sigmas vars = (sigmas * 2)**2 k = len(sigmas) # compute oks between each detection and ground truth object for j, gt in enumerate(gts): # create bounds for ignore regions(double the gt bbox) g = np.array(gt['keypoints']) xg = g[0::3]; yg = g[1::3]; vg = g[2::3] k1 = np.count_nonzero(vg > 0) bb = gt['bbox'] x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2 y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2 for i, dt in enumerate(dts): d = np.array(dt['keypoints']) xd = d[0::3]; yd = d[1::3] if k1>0: # measure the per-keypoint distance if keypoints visible dx = xd - xg dy = yd - yg else: # measure minimum distance to keypoints in (x0,y0) & (x1,y1) z = np.zeros((k)) dx = np.max((z, x0-xd),axis=0)+np.max((z, xd-x1),axis=0) dy = np.max((z, y0-yd),axis=0)+np.max((z, yd-y1),axis=0) e = (dx**2 + dy**2) / vars / (gt['area']+np.spacing(1)) / 2 if k1 > 0: e=e[vg > 0] ious[i, j] = np.sum(np.exp(-e)) / e.shape[0] return ious def is_bbox1_inside_bbox2(self, bbox1, bbox2): ''' Check if bbox1 is inside bbox2. Bbox is in the format [x, y, w, h] Returns: - True if bbox1 is inside bbox2, False otherwise - How much bbox1 is inside bbox2 (number between 0 and 1) ''' x1_1, y1_1, w1_1, h1_1 = bbox1 x1_2, y1_2, w1_2, h1_2 = bbox2 # Convert xywh to (x, y, x2, y2) format x2_1, y2_1 = x1_1 + w1_1, y1_1 + h1_1 x2_2, y2_2 = x1_2 + w1_2, y1_2 + h1_2 # Calculate the coordinates of the intersection rectangle x_left, y_top = max(x1_1, x1_2), max(y1_1, y1_2) x_right, y_bottom = min(x2_1, x2_2), min(y2_1, y2_2) print(f"{x_left=}, {x_right=}, {y_top=}, {y_bottom=}") if x_right < x_left or y_bottom < y_top: return False, 0 intersection_area = (x_right - x_left) * (y_bottom - y_top) print(f"{intersection_area=}") return True, intersection_area / (w1_1 * h1_1) def evaluateImg(self, imgId, catId, aRng, maxDet): ''' perform evaluation for single category and image :return: dict (single image results) ''' p = self.params if p.useCats: gt = self._gts[imgId,catId] dt = self._dts[imgId,catId] else: gt = [_ for cId in p.catIds for _ in self._gts[imgId,cId]] dt = [_ for cId in p.catIds for _ in self._dts[imgId,cId]] if len(gt) == 0 and len(dt) ==0: return None for g in gt: if g['ignore'] or (g['area']aRng[1]): g['_ignore'] = 1 else: g['_ignore'] = 0 # sort dt highest score first, sort gt ignore last gtind = np.argsort([g['_ignore'] for g in gt], kind='mergesort') gt = [gt[i] for i in gtind] dtind = np.argsort([-d['score'] for d in dt], kind='mergesort') dt = [dt[i] for i in dtind[0:maxDet]] iscrowd = [int(o['iscrowd']) for o in gt] # load computed ious ious = self.ious[imgId, catId][:, gtind] if len(self.ious[imgId, catId]) > 0 else self.ious[imgId, catId] T = len(p.iouThrs) G = len(gt) D = len(dt) gtm = np.zeros((T,G)) dtm = np.zeros((T,D)) gtIg = np.array([g['_ignore'] for g in gt]) dtIg = np.zeros((T,D)) dtDup = np.zeros((T,D)) if not len(ious)==0: for tind, t in enumerate(p.iouThrs): for dind, d in enumerate(dt): # information about best match so far (m=-1 -> unmatched) iou = min([t,1-1e-10]) m = -1 for gind, g in enumerate(gt): # if this gt already matched, iou>iouThr, and not a crowd # store detection as duplicate if gtm[tind,gind]>0 and ious[dind,gind]>t and not iscrowd[gind]: dtDup[tind, dind] = d['id'] # if this gt already matched, and not a crowd, continue if gtm[tind,gind]>0 and not iscrowd[gind]: continue # if dt matched to reg gt, and on ignore gt, stop if m > -1 and gtIg[m]==0 and gtIg[gind]==1: break # continue to next gt unless better match made if ious[dind,gind] < iou: continue # if match successful and best so far, store appropriately iou=ious[dind,gind] m=gind # if match made store id of match for both dt and gt if m ==-1: continue dtIg[tind,dind] = gtIg[m] dtm[tind,dind] = gt[m]['id'] gtm[tind,m] = d['id'] # set unmatched detections outside of area range to ignore a = np.array([d['area']aRng[1] for d in dt]).reshape((1, len(dt))) dtIg = np.logical_or(dtIg, np.logical_and(dtm==0, np.repeat(a,T,0))) # only consider duplicates if dets are inside the area range dtDup = np.logical_and(dtDup, np.logical_and(dtm==0, np.logical_not(np.repeat(a,T,0)))) # false positive img (fpi) when all gt are ignored and there remain detections fpi = (gtIg.sum() == G) and np.any(dtIg == 0) # store results for given image and category return { 'image_id': imgId, 'category_id': catId, 'aRng': aRng, 'maxDet': maxDet, 'dtIds': [d['id'] for d in dt], 'gtIds': [g['id'] for g in gt], 'dtMatches': dtm, 'gtMatches': gtm, 'dtScores': [d['score'] for d in dt], 'gtIgnore': gtIg, 'dtIgnore': dtIg, 'dtDuplicates': dtDup, 'fpi': fpi, } def accumulate(self, p = None): ''' Accumulate per image evaluation results and store the result in self.eval :param p: input params for evaluation :return: None ''' print('Accumulating evaluation results...') tic = time.time() if not self.evalImgs: print('Please run evaluate() first') # allows input customized parameters if p is None: p = self.params p.catIds = p.catIds if p.useCats == 1 else [-1] T = len(p.iouThrs) R = len(p.recThrs) K = len(p.catIds) if p.useCats else 1 A = len(p.areaRng) M = len(p.maxDets) precision = -np.ones((T,R,K,A,M)) # -1 for the precision of absent categories recall = -np.ones((T,K,A,M)) scores = -np.ones((T,R,K,A,M)) TP = -np.ones((T,K,A,M)) FP = -np.ones((T,K,A,M)) FN = -np.ones((T,K,A,M)) duplicates = -np.ones((T,K,A,M)) FPI = -np.ones((T,K,A,M)) # matrix of arrays TPC = np.empty((T,K,A,M), dtype=object) FPC = np.empty((T,K,A,M), dtype=object) sorted_conf = np.empty((K,A,M), dtype=object) # create dictionary for future indexing _pe = self._paramsEval catIds = _pe.catIds if _pe.useCats else [-1] setK = set(catIds) setA = set(map(tuple, _pe.areaRng)) setM = set(_pe.maxDets) setI = set(_pe.imgIds) # get inds to evaluate k_list = [n for n, k in enumerate(p.catIds) if k in setK] m_list = [m for n, m in enumerate(p.maxDets) if m in setM] a_list = [n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA] i_list = [n for n, i in enumerate(p.imgIds) if i in setI] I0 = len(_pe.imgIds) A0 = len(_pe.areaRng) # retrieve E at each category, area range, and max number of detections for k, k0 in enumerate(k_list): Nk = k0*A0*I0 for a, a0 in enumerate(a_list): Na = a0*I0 for m, maxDet in enumerate(m_list): E = [self.evalImgs[Nk + Na + i] for i in i_list] E = [e for e in E if not e is None] if len(E) == 0: continue dtScores = np.concatenate([e['dtScores'][0:maxDet] for e in E]) # different sorting method generates slightly different results. # mergesort is used to be consistent as Matlab implementation. inds = np.argsort(-dtScores, kind='mergesort') dtScoresSorted = dtScores[inds] sorted_conf[k,a,m] = dtScoresSorted.copy() dtm = np.concatenate([e['dtMatches'][:,0:maxDet] for e in E], axis=1)[:,inds] dtIg = np.concatenate([e['dtIgnore'][:,0:maxDet] for e in E], axis=1)[:,inds] dtDups = np.concatenate([e['dtDuplicates'][:,0:maxDet] for e in E], axis=1)[:,inds] gtIg = np.concatenate([e['gtIgnore'] for e in E]) npig = np.count_nonzero(gtIg==0) # number of not ignored gt objects fpi = np.array([e['fpi'] for e in E]) # false positive image (no gt objects) # if npig == 0: # print("No ground truth objects, continuing...") # continue tps = np.logical_and( dtm, np.logical_not(dtIg) ) fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg) ) tp_sum = np.cumsum(tps, axis=1).astype(dtype=float) fp_sum = np.cumsum(fps, axis=1).astype(dtype=float) fpi_sum = np.cumsum(fpi).astype(dtype=int) for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): tp = np.array(tp) fp = np.array(fp) fn = npig - tp # difference between gt and tp nd = len(tp) rc = tp / npig if npig else [0] pr = tp / (fp+tp+np.spacing(1)) q = np.zeros((R,)) ss = np.zeros((R,)) # if nd: recall[t,k,a,m] = rc[-1] else: recall[t,k,a,m] = 0 TP[t,k,a,m] = tp[-1] if nd else 0 FP[t,k,a,m] = fp[-1] if nd else 0 FN[t,k,a,m] = fn[-1] if nd else npig duplicates[t,k,a,m] = np.sum(dtDups[t, :]) FPI[t,k,a,m] = fpi_sum[-1] TPC[t,k,a,m] = tp.copy() FPC[t,k,a,m] = fp.copy() # numpy is slow without cython optimization for accessing elements # use python array gets significant speed improvement pr = pr.tolist(); q = q.tolist() for i in range(nd-1, 0, -1): if pr[i] > pr[i-1]: pr[i-1] = pr[i] inds = np.searchsorted(rc, p.recThrs, side='left') try: for ri, pi in enumerate(inds): q[ri] = pr[pi] ss[ri] = dtScoresSorted[pi] except: pass precision[t,:,k,a,m] = np.array(q) scores[t,:,k,a,m] = np.array(ss) self.eval = { 'params': p, 'counts': [T, R, K, A, M], 'date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), 'precision': precision, 'recall': recall, 'scores': scores, 'TP': TP, 'FP': FP, 'FN': FN, 'duplicates': duplicates, 'support': TP + FN, 'FPI': FPI, 'TPC': TPC, 'FPC': FPC, 'sorted_conf': sorted_conf, } toc = time.time() print('DONE (t={:0.2f}s).'.format( toc-tic)) def summarize(self): results = {} max_dets = self.params.maxDets[-1] min_iou = self.params.iouThrs[0] results['params'] = self.params results['eval'] = self.eval results['metrics'] = {} # for area_lbl in self.params.areaRngLbl: # results.append(self._summarize('ap', iouThr=min_iou, # areaRng=area_lbl, maxDets=max_dets)) # for area_lbl in self.params.areaRngLbl: # results.append(self._summarize('ar', iouThr=min_iou, # areaRng=area_lbl, maxDets=max_dets)) metrics_str = f"{'tp':>6}, {'fp':>6}, {'fn':>6}, {'dup':>6}, " metrics_str += f"{'pr':>5.2}, {'rec':>5.2}, {'f1':>5.2}, {'supp':>6}" metrics_str += f", {'fpi':>6}, {'nImgs':>6}" print('{:>51} {}'.format('METRIC', metrics_str)) for area_lbl in self.params.areaRngLbl: results['metrics'][area_lbl] = self._summarize( 'pr_rec_f1', iouThr=min_iou, areaRng=area_lbl, maxDets=max_dets ) return results def _summarize(self, metric_type='ap', iouThr=None, areaRng='all', maxDets=100): """ Helper function to print and obtain metrics of types: - ap: average precision - ar: average recall - cf: tp, fp, fn, precision, recall, f1 values from COCOeval object """ def _summarize_ap_ar(ap=1, iouThr=None, areaRng='all', maxDets=100): iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}' titleStr = 'Average Precision' if ap == 1 else 'Average Recall' typeStr = '(AP)' if ap == 1 else '(AR)' iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \ if iouThr is None else '{:0.2f}'.format(iouThr) aind = [i for i, aRng in enumerate( p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] if ap == 1: # dimension of precision: [TxRxKxAxM] s = self.eval['precision'] # IoU if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:, :, :, aind, mind] else: # dimension of recall: [TxKxAxM] s = self.eval['recall'] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:, :, aind, mind] if len(s[s > -1]) == 0: mean_s = -1 else: mean_s = np.mean(s[s > -1]) print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) return mean_s def _summarize_pr_rec_f1(iouThr=None, areaRng='all', maxDets=100): aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] # dimension of TP, FP, FN [TxKxAxM] tp = self.eval['TP'] fp = self.eval['FP'] fn = self.eval['FN'] dup = self.eval['duplicates'] fpi = self.eval['FPI'] nImgs = len(p.imgIds) # filter by IoU if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] tp, fp, fn = tp[t], fp[t], fn[t] dup = dup[t] fpi = fpi[t] # filter by area and maxDets tp = tp[:, :, aind, mind].squeeze() fp = fp[:, :, aind, mind].squeeze() fn = fn[:, :, aind, mind].squeeze() dup = dup[:, :, aind, mind].squeeze() fpi = fpi[:, :, aind, mind].squeeze() # handle case where tp, fp, fn and dup are empty (no gt and no dt) if all([not np.any(m) for m in [tp, fp, fn, dup, fpi]]): tp, fp, fn, dup, fpi =[-1] * 5 else: tp, fp, fn, dup, fpi = [e.item() for e in [tp, fp, fn, dup, fpi]] # compute precision, recall, f1 if tp == -1 and fp == -1 and fn == -1: pr, rec, f1 = -1, -1, -1 support, fpi = 0, 0 else: pr = 0 if tp + fp == 0 else tp / (tp + fp) rec = 0 if tp + fn == 0 else tp / (tp + fn) f1 = 0 if pr + rec == 0 else 2 * pr * rec / (pr + rec) support = tp + fn # print(f"{tp=}, {fp=}, {fn=}, {dup=}, {pr=}, {rec=}, {f1=}, {support=}, {fpi=}") iStr = '@[ IoU={:<9} | area={:>9s} | maxDets={:>3d} ] = {}' iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \ if iouThr is None else '{:0.2f}'.format(iouThr) metrics_str = f"{tp:>6.0f}, {fp:>6.0f}, {fn:>6.0f}, {dup:>6.0f}, " metrics_str += f"{pr:>5.2f}, {rec:>5.2f}, {f1:>5.2f}, {support:>6.0f}, " metrics_str += f"{fpi:>6.0f}, {nImgs:>6.0f}" print(iStr.format(iouStr, areaRng, maxDets, metrics_str)) return { 'range': p.areaRng[aind[0]], 'iouThr': iouStr, 'maxDets': maxDets, 'tp': int(tp), 'fp': int(fp), 'fn': int(fn), 'duplicates': int(dup), 'precision': pr, 'recall': rec, 'f1': f1, 'support': int(support), 'fpi': int(fpi), 'nImgs': nImgs, } p = self.params if metric_type in ['ap', 'ar']: ap = 1 if metric_type == 'ap' else 0 return _summarize_ap_ar(ap, iouThr=iouThr, areaRng=areaRng, maxDets=maxDets) # return tp, fp, fn, pr, rec, f1, support, fpi, nImgs return _summarize_pr_rec_f1(iouThr=iouThr, areaRng=areaRng, maxDets=maxDets) def __str__(self): self.summarize() class Params: ''' Params for coco evaluation api ''' def setDetParams(self): self.imgIds = [] self.catIds = [] # np.arange causes trouble. the data point on arange is slightly larger than the true value self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) self.maxDets = [1, 10, 100] self.areaRng = [[0 ** 2, 1e5 ** 2], [0 ** 2, 32 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'small', 'medium', 'large'] self.useCats = 1 def setKpParams(self): self.imgIds = [] self.catIds = [] # np.arange causes trouble. the data point on arange is slightly larger than the true value self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, int(np.round((1.00 - .0) / .01)) + 1, endpoint=True) self.maxDets = [20] self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'medium', 'large'] self.useCats = 1 self.kpt_oks_sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62,.62, 1.07, 1.07, .87, .87, .89, .89])/10.0 def __init__(self, iouType='segm'): if iouType == 'segm' or iouType == 'bbox': self.setDetParams() elif iouType == 'keypoints': self.setKpParams() else: raise Exception('iouType not supported') self.iouType = iouType # useSegm is deprecated self.useSegm = None def __repr__(self) -> str: return str(self.__dict__) def __iter__(self): return iter(self.__dict__.items())