# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" from typing import List, Literal, Tuple import datasets import evaluate import numpy as np from deprecated import deprecated from seametrics.detection import PrecisionRecallF1Support from seametrics.detection.utils import payload_to_det_metric from seametrics.payload import Payload _CITATION = """\ @InProceedings{coco:2020, title = {Microsoft {COCO:} Common Objects in Context}, authors={Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and James Hays and Pietro Perona and Deva Ramanan and Piotr Dollar and C. Lawrence Zitnick}, booktitle = {Computer Vision - {ECCV} 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part {V}}, series = {Lecture Notes in Computer Science}, volume = {8693}, pages = {740--755}, publisher = {Springer}, year={2014} } """ _DESCRIPTION = """\ This evaluation metric is designed to give provide object detection metrics at different object size levels. It is based on a modified version of the commonly used COCO-evaluation metrics. """ _KWARGS_DESCRIPTION = """ Calculates object detection metrics given predicted and ground truth bounding boxes for a single image. Args: predictions: list of predictions for each image. Each prediction should be a dict containing the following - 'boxes': list of bounding boxes, xywh in absolute pixel values - 'labels': list of labels for each bounding box - 'scores': list of scores for each bounding box references: list of ground truth annotations for each image. Each reference should be a dict containing the following - 'boxes': list of bounding boxes, xywh in absolute pixel values - 'labels': list of labels for each bounding box - 'area': list of areas for each bounding box Returns: dict containing dicts for each specified area range with following items: 'range': specified area with [max_px_area, max_px_area] 'iouThr': min. IOU-threshold of a prediction with a ground truth box to be considered a correct prediction 'maxDets': maximum number of detections 'tp': number of true positive (correct) predictions 'fp': number of false positive (incorrect) predictions 'fn': number of false negative (missed) predictions 'duplicates': number of duplicate predictions 'precision': best possible score = 1, worst possible score = 0 large if few false positive predictions formula: tp/(fp+tp) 'recall' best possible score = 1, worst possible score = 0 large if few missed predictions formula: tp/(tp+fn) 'f1': best possible score = 1, worst possible score = 0 trades off precision and recall formula: 2*(precision*recall)/(precision+recall) 'support': number of ground truth bounding boxes considered in the evaluation, 'fpi': number of images with no ground truth but false positive predictions, 'nImgs': number of images considered in evaluation Examples: >>> import evaluate >>> from seametrics.payload.processor import PayloadProcessor >>> payload = PayloadProcessor(...).payload >>> module = evaluate.load("SEA-AI/det-metrics", ...) >>> module._add_payload(payload) >>> result = module.compute() >>> print(result) {'all': { 'range': [0, 10000000000.0], 'iouThr': '0.00', 'maxDets': 100, 'tp': 1, 'fp': 3, 'fn': 1, 'duplicates': 0, 'precision': 0.25, 'recall': 0.5, 'f1': 0.3333333333333333, 'support': 2, 'fpi': 0, 'nImgs': 2 } } """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class DetectionMetric(evaluate.Metric): def __init__( self, area_ranges_tuples: List[Tuple[str, List[int]]] = [("all", [0, 1e5**2])], iou_threshold: List[float] = [1e-10], class_agnostic: bool = True, bbox_format: str = "xywh", iou_type: Literal["bbox", "segm"] = "bbox", payload: Payload = None, **kwargs, ): super().__init__(**kwargs) # save parameters for later self.payload = payload self.model_names = payload.models if payload else ["custom"] self.iou_threshold = iou_threshold self.area_ranges_tuples = area_ranges_tuples self.class_agnostic = class_agnostic self.iou_type = iou_type self.bbox_format = bbox_format # postprocess parameters self.iou_thresholds = ( iou_threshold if isinstance(iou_threshold, list) else [iou_threshold] ) self.area_ranges = [v for _, v in area_ranges_tuples] self.area_ranges_labels = [k for k, _ in area_ranges_tuples] # initialize coco_metrics self.coco_metric = PrecisionRecallF1Support( iou_thresholds=self.iou_thresholds, area_ranges=self.area_ranges, area_ranges_labels=self.area_ranges_labels, class_agnostic=self.class_agnostic, iou_type=self.iou_type, box_format=self.bbox_format, ) # initialize evaluation metric self._init_evaluation_metric() def _info(self): return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features( { "predictions": [ datasets.Features( { "boxes": datasets.Sequence( datasets.Sequence(datasets.Value("float")) ), "labels": datasets.Sequence(datasets.Value("int64")), "scores": datasets.Sequence(datasets.Value("float")), } ) ], "references": [ datasets.Features( { "boxes": datasets.Sequence( datasets.Sequence(datasets.Value("float")) ), "labels": datasets.Sequence(datasets.Value("int64")), "area": datasets.Sequence(datasets.Value("float")), } ) ], } ), # Additional links to the codebase or references codebase_urls=[ "https://github.com/SEA-AI/seametrics/tree/main", "https://lightning.ai/docs/torchmetrics/stable/detection/mean_average_precision.html", ], ) def add(self, *, prediction, reference, **kwargs): """Adds a batch of predictions and references to the metric""" # in case the inputs are lists, convert them to numpy arrays prediction = self._preprocess(prediction) reference = self._preprocess(reference) self.coco_metric.update(prediction, reference) def _init_evaluation_metric(self, **kwargs): """ Initializes the evaluation metric by generating sample data, preprocessing predictions and references, and then adding the processed data to the metric using the super class method with additional keyword arguments. Parameters: **kwargs: Additional keyword arguments for the super class method. Returns: None """ predictions, references = self._generate_sample_data() predictions = self._preprocess(predictions) references = self._preprocess(references) # does not impact the metric, but is required for the interface x_x super(evaluate.Metric, self).add( prediction=self._postprocess(predictions), references=self._postprocess(references), **kwargs, ) @deprecated(reason="Use `module._add_payload` instead") def add_batch(self, payload: Payload, model_name: str = None): """Takes as input a payload and adds the batch to the metric""" self._add_payload(payload, model_name) def _compute(self, *, predictions, references, **kwargs): """Called within the evaluate.Metric.compute() method""" results = {} for model_name in self.model_names: print(f"\n##### {model_name} #####") # add payload if available (otherwise predictions and references must be added with add function) if self.payload: self._add_payload(self.payload, model_name) results[model_name] = self.coco_metric.compute() # reset coco_metrics for next model self.coco_metric = PrecisionRecallF1Support( iou_thresholds=self.iou_thresholds, area_ranges=self.area_ranges, area_ranges_labels=self.area_ranges_labels, class_agnostic=self.class_agnostic, iou_type=self.iou_type, box_format=self.bbox_format, ) return results def _add_payload(self, payload: Payload, model_name: str = None): """Converts the payload to the format expected by the metric""" # import only if needed since fiftyone is not a direct dependency predictions, references = payload_to_det_metric(payload, model_name) self.add(prediction=predictions, reference=references) return self def _preprocess(self, list_of_dicts): """Converts the lists to numpy arrays for type checking""" return [self._lists_to_np(d) for d in list_of_dicts] def _postprocess(self, list_of_dicts): """Converts the numpy arrays to lists for type checking""" return [self._np_to_lists(d) for d in list_of_dicts] def _np_to_lists(self, d): """datasets does not support numpy arrays for type checking""" for k, v in d.items(): if isinstance(v, dict): self._np_to_lists(v) elif isinstance(v, np.ndarray): d[k] = v.tolist() return d def _lists_to_np(self, d): """datasets does not support numpy arrays for type checking""" for k, v in d.items(): if isinstance(v, dict): self._lists_to_np(v) elif isinstance(v, list): d[k] = np.array(v) return d def generate_confidence_curves( self, results, confidence_config={"T": 0, "R": 0, "K": 0, "A": 0, "M": 0} ): """ Generate confidence curves based on results and confidence configuration. Parameters: results (dict): Results of the evaluation for different models. confidence_config (dict): Configuration for confidence values. Defaults to {"T": 0, "R": 0, "K": 0, "A": 0, "M": 0}. T: [1e-10] iou threshold R: recall threshold (not used) K: class index (class-agnostic mAP, so only 0) A: 0=all, 1=small, 2=medium, 3=large, ... (depending on area ranges) M: [100] maxDets default in precision_recall_f1_support Returns: fig (plotly.graph_objects.Figure): The plotly figure showing the confidence curves. """ import plotly.graph_objects as go from seametrics.detection.utils import get_confidence_metric_vals # Create traces fig = go.Figure() metrics = ["precision", "recall", "f1"] for model_name in self.model_names: print(f"##### {model_name} #####") plot_data = get_confidence_metric_vals( cocoeval=results[model_name]["eval"], T=confidence_config["T"], R=confidence_config["R"], K=confidence_config["K"], A=confidence_config["A"], M=confidence_config["M"], ) for metric in metrics: fig.add_trace( go.Scatter( x=plot_data["conf"], y=plot_data[metric], mode="lines", name=f"{model_name} {metric}", line=dict(dash=None if metric == "f1" else "dash"), ) ) fig.update_layout( title="Metric vs Confidence", hovermode="x unified", xaxis_title="Confidence", yaxis_title="Metric value", ) return fig def wandb(self, results , wandb_runs: list = None, wandb_section: str = None, wandb_project='detection_metrics'): """ Logs metrics to Weights and Biases (wandb) for tracking and visualization. This function logs the provided metrics to Weights and Biases (wandb), a platform for tracking machine learning experiments. Each key in the `results` dictionary represents a separate run and the corresponding value contains the metrics for that run. If a W&B run list is provided, the results of the runs will be added to the passed W&B runs. Otherwise new W&B runs will be created. If a W&B section ist provided, the metrics will be logged in this section drop-down. Otherwise no extra W&B section is created and the metrics are logged directly. The function logs in to wandb using an API key obtained from the secret 'WANDB_API_KEY', initializes a run for each key in `results` and logs the metrics. Args: results (dict): A dictionary where each key is a unique identifier for a run and each value is another dictionary containing the metrics to log. Example: { "run1": {"metrics": {"accuracy": 0.9, "loss": 0.1}}, "run2": {"metrics": {"accuracy": 0.85, "loss": 0.15}} } wandb_runs (list, optional): A list containing W&B runs where the results should be added (e.g. the first item in results will be added to the first run in wandb_runs, etc.) wandb_section (str, optional): A string to specify the W&B wandb_project (str, optional): The name of the wandb project to which the runs will be logged. Defaults to 'detection_metrics'. Environment Variables: WANDB_API_KEY: The API key for authenticating with wandb. Imports: os: To retrieve environment variables. wandb: To interact with the Weights and Biases platform. datetime: To generate a timestamp for run names. """ import os import wandb import datetime current_datetime = datetime.datetime.now() formatted_datetime = current_datetime.strftime("%Y-%m-%d_%H-%M-%S") wandb.login(key=os.getenv('WANDB_API_KEY')) if not wandb_runs is None: assert len(wandb_runs) == len(results), "runs and results must have the same length" for i, k in enumerate(results.keys()): if wandb_runs is None: run = wandb.init(project=wandb_project, name=f"{k}-{formatted_datetime}") else: run = wandb_runs[i] run.log({f"{wandb_section}/{m}" : v for m, v in results[k]['metrics'].items()} if wandb_section is not None else results[k]['metrics']) if wandb_runs is None: run.finish() def _generate_sample_data(self): """ Generates dummy sample data for predictions and references used for initialization. Returns: Tuple[List[Dict[str, List[Union[float, int]]]], List[Dict[str, List[Union[float, int]]]]]: - predictions (List[Dict[str, List[Union[float, int]]]]): A list of dictionaries representing the predictions. Each dictionary contains the following keys: - boxes (List[List[float]]): A list of bounding boxes in the format [x, y, w, h]. - labels (List[int]): A list of labels. - scores (List[float]): A list of scores. - references (List[Dict[str, List[Union[float, int]]]]): A list of dictionaries representing the references. Each dictionary contains the following keys: - boxes (List[List[float]]): A list of bounding boxes in the format [x, y, w, h]. - labels (List[int]): A list of labels. - area (List[float]): A list of areas. """ predictions = [ {"boxes": [[1.0, 2.0, 3.0, 4.0]], "labels": [0], "scores": [1.0]} ] references = [{"boxes": [[1.0, 2.0, 3.0, 4.0]], "labels": [0], "area": [1.0]}] return predictions, references def compute_from_payload(self, payload: Payload, **kwargs): """ Compute the metric from the payload. Args: payload (Payload): The payload to compute the metric from. **kwargs: Additional keyword arguments. Returns: dict: The computed metric results with the following format: { "model_name": { "overall": { "all": {"tp": ..., "fp": ..., "fn": ..., "f1": ...}, ... # more area ranges }, "per_sequence": { "sequence_name": { "all": {...}, ... # more area ranges }, ... # more sequences } }, ... # more models } Note: - If the metric does not support area ranges, the metric should store the results under the `all` key. - If a range area is provided it will be displayed in the output. if area_ranges_tuples is None, then all the area ranges will be displayed """ results = {} for model_name in payload.models: results[model_name] = {"overall": {}, "per_sequence": {}} # per-sequence loop for seq_name, sequence in payload.sequences.items(): print(f"\n##### {seq_name} #####") # create new payload only with specific sequence and model sequence_payload = Payload( dataset=payload.dataset, gt_field_name=payload.gt_field_name, models=[model_name], sequences={seq_name: sequence} ) module = DetectionMetric( area_ranges_tuples=kwargs["area_ranges_tuples"], iou_threshold=self.iou_threshold, class_agnostic=self.class_agnostic, bbox_format=self.bbox_format, iou_type=self.iou_type, payload=sequence_payload ) results[model_name]["per_sequence"][seq_name] = module.compute()[model_name]["metrics"] # overall per-model loop model_payload = Payload( dataset=payload.dataset, gt_field_name=payload.gt_field_name, models=[model_name], sequences=payload.sequences ) module = DetectionMetric( area_ranges_tuples=kwargs["area_ranges_tuples"], iou_threshold=self.iou_threshold, class_agnostic=self.class_agnostic, bbox_format=self.bbox_format, iou_type=self.iou_type, payload=model_payload ) results[model_name]["overall"] = module.compute()[model_name]["metrics"] return results