--- title: det-metrics tags: - evaluate - metric description: >- Modified cocoevals.py which is wrapped into torchmetrics' mAP metric with numpy instead of torch dependency. sdk: gradio sdk_version: 4.36.0 app_file: app.py pinned: false emoji: 🕵️ --- # SEA-AI/det-metrics This hugging face metric uses `seametrics.detection.PrecisionRecallF1Support` under the hood to compute coco-like metrics for object detection tasks. It is a [modified cocoeval.py](https://github.com/SEA-AI/seametrics/blob/develop/seametrics/detection/cocoeval.py) wrapped inside [torchmetrics' mAP metric](https://lightning.ai/docs/torchmetrics/stable/detection/mean_average_precision.html) but with numpy arrays instead of torch tensors. ## Getting Started To get started with det-metrics, make sure you have the necessary dependencies installed. This metric relies on the `evaluate` and `seametrics` libraries for metric calculation and integration with FiftyOne datasets. ### Installation First, ensure you have Python 3.8 or later installed. Then, install det-metrics using pip: ```sh pip install evaluate git+https://github.com/SEA-AI/seametrics@develop ``` ### Basic Usage Here's how to quickly evaluate your object detection models using SEA-AI/det-metrics: ```python import evaluate # Define your predictions and references (dict values can also by numpy arrays) predictions = [ { "boxes": [[449.3, 197.75390625, 6.25, 7.03125], [334.3, 181.58203125, 11.5625, 6.85546875]], "labels": [0, 0], "scores": [0.153076171875, 0.72314453125], } ] references = [ { "boxes": [[449.3, 197.75390625, 6.25, 7.03125], [334.3, 181.58203125, 11.5625, 6.85546875]], "labels": [0, 0], "area": [132.2, 83.8], } ] # Load SEA-AI/det-metrics and evaluate module = evaluate.load("SEA-AI/det-metrics") module.add(prediction=predictions, reference=references) results = module.compute() print(results) ``` This will output the evaluation metrics for your detection model. ``` {'all': {'range': [0, 10000000000.0], 'iouThr': '0.00', 'maxDets': 100, 'tp': 2, 'fp': 0, 'fn': 0, 'duplicates': 0, 'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'support': 2, 'fpi': 0, 'nImgs': 1} ``` ## FiftyOne Integration Integrate SEA-AI/det-metrics with FiftyOne datasets for enhanced analysis and visualization: ```python import evaluate import logging from seametrics.payload.processor import PayloadProcessor logging.basicConfig(level=logging.WARNING) # Configure your dataset and model details processor = PayloadProcessor( dataset_name="SAILING_DATASET_QA", gt_field="ground_truth_det", models=["yolov5n6_RGB_D2304-v1_9C"], sequence_list=["Trip_14_Seq_1"], data_type="rgb", ) # Evaluate using SEA-AI/det-metrics module = evaluate.load("SEA-AI/det-metrics") module.add_payload(processor.payload) results = module.compute() print(results) ``` ```console {'all': {'range': [0, 10000000000.0], 'iouThr': '0.00', 'maxDets': 100, 'tp': 89, 'fp': 13, 'fn': 15, 'duplicates': 1, 'precision': 0.8725490196078431, 'recall': 0.8557692307692307, 'f1': 0.8640776699029126, 'support': 104, 'fpi': 0, 'nImgs': 22}} ``` ## Metric Settings Customize your evaluation by specifying various parameters when loading SEA-AI/det-metrics: - **area_ranges_tuples**: Define different area ranges for metrics calculation. - **bbox_format**: Set the bounding box format (e.g., `"xywh"`). - **iou_threshold**: Choose the IOU threshold for determining correct detections. - **class_agnostic**: Specify whether to calculate metrics disregarding class labels. ```python area_ranges_tuples = [ ("all", [0, 1e5**2]), ("small", [0**2, 6**2]), ("medium", [6**2, 12**2]), ("large", [12**2, 1e5**2]), ] module = evaluate.load( "SEA-AI/det-metrics", iou_threshold=[0.00001], area_ranges_tuples=area_ranges_tuples, ) ``` ## Output Values SEA-AI/det-metrics provides a detailed breakdown of performance metrics for each specified area range: - **range**: The area range considered. - **iouThr**: The IOU threshold applied. - **maxDets**: The maximum number of detections evaluated. - **tp/fp/fn**: Counts of true positives, false positives, and false negatives. - **duplicates**: Number of duplicate detections. - **precision/recall/f1**: Calculated precision, recall, and F1 score. - **support**: Number of ground truth boxes considered. - **fpi**: Number of images with predictions but no ground truths. - **nImgs**: Total number of images evaluated. ## Further References - **seametrics Library**: Explore the [seametrics GitHub repository](https://github.com/SEA-AI/seametrics/tree/main) for more details on the underlying library. - **Pycoco Tools**: SEA-AI/det-metrics calculations are based on [pycoco tools](https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools), a widely used library for COCO dataset evaluation. - **Understanding Metrics**: For a deeper understanding of precision, recall, and other metrics, read [this comprehensive guide](https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/). ## Contribution Your contributions are welcome! If you'd like to improve SEA-AI/det-metrics or add new features, please feel free to fork the repository, make your changes, and submit a pull request.