Spaces:
Sleeping
Sleeping
""" | |
Main application for RGB detection demo. | |
Any new model should implement the following functions: | |
- load_model(model_path, img_size=640) | |
- inference(model, image) | |
""" | |
import os | |
import glob | |
import functools | |
import spaces | |
import gradio as gr | |
from huggingface_hub import get_token | |
from utils import ( | |
check_image, | |
load_image_from_url, | |
load_badges, | |
FlaggedCounter, | |
) | |
from flagging import HuggingFaceDatasetSaver | |
import install_private_repos | |
from seavision import load_model, AHOY | |
from seavision.utils.general import LOGGER | |
TITLE = """ | |
<h1> π SEA.AI's Machine Vision Demo β¨ </h1> | |
<p align="center"> | |
Ahoy! Explore our object detection technology! | |
Upload a maritime scene image and click <code>Submit</code> | |
to see the results. | |
</p> | |
""" | |
FLAG_TXT = "Report Mis-detection" | |
NOTICE = f""" | |
π© See something off? Your feedback makes a difference! Let us know by | |
flagging any outcomes that don't seem right. Click the `{FLAG_TXT}` button | |
to submit the image for review. | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
def get_model(): | |
return load_model("ahoy-RGB-b2") | |
def inference(image): | |
"""Run inference on image and return annotated image.""" | |
model = get_model() | |
model.model.alloc_arrays.fill(0) | |
results = model(image) | |
return results.draw(image, diameter=4) | |
# Flagging | |
dataset_name = "SEA-AI/crowdsourced-sea-images" | |
hf_writer = HuggingFaceDatasetSaver(get_token(), dataset_name) | |
flagged_counter = FlaggedCounter(dataset_name) | |
theme = gr.themes.Default(primary_hue=gr.themes.colors.indigo) | |
with gr.Blocks(theme=theme, css=css, title="SEA.AI Vision Demo") as demo: | |
badges = gr.HTML(load_badges(flagged_counter.count())) | |
title = gr.HTML(TITLE) | |
with gr.Row(): | |
with gr.Column(): | |
img_input = gr.Image( | |
label="input", interactive=True, sources=["upload", "clipboard"] | |
) | |
img_url = gr.Textbox( | |
lines=1, | |
placeholder="or enter URL to image here", | |
label="input_url", | |
show_label=False, | |
) | |
with gr.Row(): | |
clear = gr.ClearButton() | |
submit = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
img_output = gr.Image(label="output", interactive=False) | |
flag = gr.Button(FLAG_TXT, visible=False) | |
notice = gr.Markdown(value=NOTICE, visible=False) | |
examples = gr.Examples( | |
examples=glob.glob("examples/*.jpg"), | |
inputs=img_input, | |
outputs=img_output, | |
fn=inference, | |
cache_examples=True, | |
) | |
# add components to clear when clear button is clicked | |
clear.add([img_input, img_url, img_output]) | |
# event listeners | |
img_url.change(load_image_from_url, [img_url], img_input) | |
submit.click(check_image, [img_input], None, show_api=False).success( | |
inference, | |
[img_input], | |
img_output, | |
api_name="inference", | |
) | |
# event listeners with decorators | |
def _show_hide_flagging(_img_input, _img_output): | |
visible = _img_output and _img_input["orig_name"] not in os.listdir("examples") | |
return { | |
flag: gr.Button(FLAG_TXT, interactive=True, visible=visible), | |
notice: gr.Markdown(value=NOTICE, visible=visible), | |
} | |
# This needs to be called prior to the first call to callback.flag() | |
hf_writer.setup([img_input], "flagged") | |
# Sequential logic when flag button is clicked | |
flag.click(lambda: gr.Info("Thank you for contributing!"), show_api=False).then( | |
lambda: {flag: gr.Button(FLAG_TXT, interactive=False)}, | |
[], | |
[flag], | |
show_api=False, | |
).then( | |
lambda *args: hf_writer.flag(args), | |
[img_input, flag], | |
[], | |
preprocess=False, | |
show_api=False, | |
).then( | |
lambda: load_badges(flagged_counter.count()), [], badges, show_api=False | |
) | |
# called during initial load in browser | |
demo.load(lambda: load_badges(flagged_counter.count()), [], badges, show_api=False) | |
if __name__ == "__main__": | |
demo.queue().launch() | |