detection-RGB / app.py
kevinconka's picture
Fix memory allocation issue in get_model function
48379e0
"""
Main application for RGB detection demo.
Any new model should implement the following functions:
- load_model(model_path, img_size=640)
- inference(model, image)
"""
import os
import glob
import functools
import spaces
import gradio as gr
from huggingface_hub import get_token
from utils import (
check_image,
load_image_from_url,
load_badges,
FlaggedCounter,
)
from flagging import HuggingFaceDatasetSaver
import install_private_repos
from seavision import load_model, AHOY
from seavision.utils.general import LOGGER
TITLE = """
<h1> 🌊 SEA.AI's Machine Vision Demo ✨ </h1>
<p align="center">
Ahoy! Explore our object detection technology!
Upload a maritime scene image and click <code>Submit</code>
to see the results.
</p>
"""
FLAG_TXT = "Report Mis-detection"
NOTICE = f"""
🚩 See something off? Your feedback makes a difference! Let us know by
flagging any outcomes that don't seem right. Click the `{FLAG_TXT}` button
to submit the image for review.
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
@functools.lru_cache(maxsize=1)
def get_model():
return load_model("ahoy-RGB-b2")
@spaces.GPU
def inference(image):
"""Run inference on image and return annotated image."""
model = get_model()
model.model.alloc_arrays.fill(0)
results = model(image)
return results.draw(image, diameter=4)
# Flagging
dataset_name = "SEA-AI/crowdsourced-sea-images"
hf_writer = HuggingFaceDatasetSaver(get_token(), dataset_name)
flagged_counter = FlaggedCounter(dataset_name)
theme = gr.themes.Default(primary_hue=gr.themes.colors.indigo)
with gr.Blocks(theme=theme, css=css, title="SEA.AI Vision Demo") as demo:
badges = gr.HTML(load_badges(flagged_counter.count()))
title = gr.HTML(TITLE)
with gr.Row():
with gr.Column():
img_input = gr.Image(
label="input", interactive=True, sources=["upload", "clipboard"]
)
img_url = gr.Textbox(
lines=1,
placeholder="or enter URL to image here",
label="input_url",
show_label=False,
)
with gr.Row():
clear = gr.ClearButton()
submit = gr.Button("Submit", variant="primary")
with gr.Column():
img_output = gr.Image(label="output", interactive=False)
flag = gr.Button(FLAG_TXT, visible=False)
notice = gr.Markdown(value=NOTICE, visible=False)
examples = gr.Examples(
examples=glob.glob("examples/*.jpg"),
inputs=img_input,
outputs=img_output,
fn=inference,
cache_examples=True,
)
# add components to clear when clear button is clicked
clear.add([img_input, img_url, img_output])
# event listeners
img_url.change(load_image_from_url, [img_url], img_input)
submit.click(check_image, [img_input], None, show_api=False).success(
inference,
[img_input],
img_output,
api_name="inference",
)
# event listeners with decorators
@img_output.change(
inputs=[img_input, img_output],
outputs=[flag, notice],
show_api=False,
preprocess=False,
show_progress="hidden",
)
def _show_hide_flagging(_img_input, _img_output):
visible = _img_output and _img_input["orig_name"] not in os.listdir("examples")
return {
flag: gr.Button(FLAG_TXT, interactive=True, visible=visible),
notice: gr.Markdown(value=NOTICE, visible=visible),
}
# This needs to be called prior to the first call to callback.flag()
hf_writer.setup([img_input], "flagged")
# Sequential logic when flag button is clicked
flag.click(lambda: gr.Info("Thank you for contributing!"), show_api=False).then(
lambda: {flag: gr.Button(FLAG_TXT, interactive=False)},
[],
[flag],
show_api=False,
).then(
lambda *args: hf_writer.flag(args),
[img_input, flag],
[],
preprocess=False,
show_api=False,
).then(
lambda: load_badges(flagged_counter.count()), [], badges, show_api=False
)
# called during initial load in browser
demo.load(lambda: load_badges(flagged_counter.count()), [], badges, show_api=False)
if __name__ == "__main__":
demo.queue().launch()