import csv import json import uuid from collections import OrderedDict from pathlib import Path from typing import Any, Sequence import filelock import huggingface_hub import gradio as gr from gradio import utils from gradio.flagging import client_utils, FlaggingCallback from gradio_client.documentation import document from gradio.components import Component @document() class HuggingFaceDatasetSaver(FlaggingCallback): """ A callback that saves each flagged sample (both the input and output data) to a HuggingFace dataset. Example: import gradio as gr hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes") def image_classifier(inp): return {'cat': 0.3, 'dog': 0.7} demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label", allow_flagging="manual", flagging_callback=hf_writer) Guides: using-flagging """ def __init__( self, hf_token: str, dataset_name: str, private: bool = False, info_filename: str = "dataset_info.json", separate_dirs: bool = False, ): """ Parameters: hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset (defaults to the registered one). dataset_name: The repo_id of the dataset to save the data to, e.g. "image-classifier-1" or "username/image-classifier-1". private: Whether the dataset should be private (defaults to False). info_filename: The name of the file to save the dataset info (defaults to "dataset_infos.json"). separate_dirs: If True, each flagged item will be saved in a separate directory. This makes the flagging more robust to concurrent editing, but may be less convenient to use. """ self.hf_token = hf_token self.dataset_id = dataset_name # TODO: rename parameter (but ensure backward compatibility somehow) self.dataset_private = private self.info_filename = info_filename self.separate_dirs = separate_dirs def setup(self, components: Sequence[Component], flagging_dir: str): """ Params: flagging_dir (str): local directory where the dataset is cloned, updated, and pushed from. """ # Setup dataset on the Hub self.dataset_id = huggingface_hub.create_repo( repo_id=self.dataset_id, token=self.hf_token, private=self.dataset_private, repo_type="dataset", exist_ok=True, ).repo_id path_glob = "**/*.jsonl" if self.separate_dirs else "data.csv" huggingface_hub.metadata_update( repo_id=self.dataset_id, repo_type="dataset", metadata={ "configs": [ { "config_name": "default", "data_files": [{"split": "train", "path": path_glob}], } ] }, overwrite=True, token=self.hf_token, ) # Setup flagging dir self.components = components self.dataset_dir = ( Path(flagging_dir).absolute() / self.dataset_id.split("/")[-1] ) self.dataset_dir.mkdir(parents=True, exist_ok=True) self.infos_file = self.dataset_dir / self.info_filename # Download remote files to local remote_files = [self.info_filename] if not self.separate_dirs: # No separate dirs => means all data is in the same CSV file => download it to get its current content remote_files.append("data.csv") for filename in remote_files: try: huggingface_hub.hf_hub_download( repo_id=self.dataset_id, repo_type="dataset", filename=filename, local_dir=self.dataset_dir, token=self.hf_token, ) except huggingface_hub.utils.EntryNotFoundError: pass def flag( self, flag_data: list[Any], flag_option: str = "", username: str | None = None, ) -> int: if self.separate_dirs: # JSONL files to support dataset preview on the Hub unique_id = str(uuid.uuid4()) components_dir = self.dataset_dir / unique_id data_file = components_dir / "metadata.jsonl" path_in_repo = unique_id # upload in sub folder (safer for concurrency) else: # Unique CSV file components_dir = self.dataset_dir data_file = components_dir / "data.csv" path_in_repo = None # upload at root level return self._flag_in_dir( data_file=data_file, components_dir=components_dir, path_in_repo=path_in_repo, flag_data=flag_data, flag_option=flag_option, username=username or "", ) def _flag_in_dir( self, data_file: Path, components_dir: Path, path_in_repo: str | None, flag_data: list[Any], flag_option: str = "", username: str = "", ) -> int: # Deserialize components (write images/audio to files) features, row = self._deserialize_components( components_dir, flag_data, flag_option, username ) # Write generic info to dataset_infos.json + upload with filelock.FileLock(str(self.infos_file) + ".lock"): if not self.infos_file.exists(): self.infos_file.write_text( json.dumps({"flagged": {"features": features}}) ) huggingface_hub.upload_file( repo_id=self.dataset_id, repo_type="dataset", token=self.hf_token, path_in_repo=self.infos_file.name, path_or_fileobj=self.infos_file, ) headers = list(features.keys()) if not self.separate_dirs: with filelock.FileLock(components_dir / ".lock"): sample_nb = self._save_as_csv(data_file, headers=headers, row=row) sample_name = str(sample_nb) huggingface_hub.upload_folder( repo_id=self.dataset_id, repo_type="dataset", commit_message=f"Flagged sample #{sample_name}", path_in_repo=path_in_repo, ignore_patterns="*.lock", folder_path=components_dir, token=self.hf_token, ) else: sample_name = self._save_as_jsonl(data_file, headers=headers, row=row) sample_nb = len( [path for path in self.dataset_dir.iterdir() if path.is_dir()] ) huggingface_hub.upload_folder( repo_id=self.dataset_id, repo_type="dataset", commit_message=f"Flagged sample #{sample_name}", path_in_repo=path_in_repo, ignore_patterns="*.lock", folder_path=components_dir, token=self.hf_token, ) return sample_nb @staticmethod def _save_as_csv(data_file: Path, headers: list[str], row: list[Any]) -> int: """Save data as CSV and return the sample name (row number).""" is_new = not data_file.exists() with data_file.open("a", newline="", encoding="utf-8") as csvfile: writer = csv.writer(csvfile) # Write CSV headers if new file if is_new: writer.writerow(utils.sanitize_list_for_csv(headers)) # Write CSV row for flagged sample writer.writerow(utils.sanitize_list_for_csv(row)) with data_file.open(encoding="utf-8") as csvfile: return sum(1 for _ in csv.reader(csvfile)) - 1 @staticmethod def _save_as_jsonl(data_file: Path, headers: list[str], row: list[Any]) -> str: """Save data as JSONL and return the sample name (uuid).""" Path.mkdir(data_file.parent, parents=True, exist_ok=True) with open(data_file, "w", encoding="utf-8") as f: json.dump(dict(zip(headers, row)), f) return data_file.parent.name def _deserialize_components( self, data_dir: Path, flag_data: list[Any], flag_option: str = "", username: str = "", ) -> tuple[dict[Any, Any], list[Any]]: """Deserialize components and return the corresponding row for the flagged sample. Images/audio are saved to disk as individual files. """ # Components that can have a preview on dataset repos file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"} # Generate the row corresponding to the flagged sample features = OrderedDict() row = [] for component, sample in zip(self.components, flag_data): # Get deserialized object (will save sample to disk if applicable -file, audio, image,...-) label = component.label or "" save_dir = data_dir / client_utils.strip_invalid_filename_characters(label) save_dir.mkdir(exist_ok=True, parents=True) deserialized = utils.simplify_file_data_in_str( component.flag(sample, save_dir) ) # Add deserialized object to row features[label] = {"dtype": "string", "_type": "Value"} try: deserialized_path = Path(deserialized) if not deserialized_path.exists(): raise FileNotFoundError(f"File {deserialized} not found") row.append(str(deserialized_path.relative_to(self.dataset_dir))) except (FileNotFoundError, TypeError, ValueError, OSError): deserialized = "" if deserialized is None else str(deserialized) row.append(deserialized) # If component is eligible for a preview, add the URL of the file # Be mindful that images and audio can be None if isinstance(component, tuple(file_preview_types)): # type: ignore for _component, _type in file_preview_types.items(): if isinstance(component, _component): features[label + " file"] = {"_type": _type} break if deserialized: path_in_repo = str( # returned filepath is absolute, we want it relative to compute URL Path(deserialized).relative_to(self.dataset_dir) ).replace("\\", "/") row.append( huggingface_hub.hf_hub_url( repo_id=self.dataset_id, filename=path_in_repo, repo_type="dataset", ) ) else: row.append("") features["flag"] = {"dtype": "string", "_type": "Value"} features["username"] = {"dtype": "string", "_type": "Value"} row.append(flag_option) row.append(username) return features, row class myHuggingFaceDatasetSaver(HuggingFaceDatasetSaver): """ Custom HuggingFaceDatasetSaver to save images/audio to disk. Gradio's implementation seems to have a bug. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _deserialize_components( self, data_dir: Path, flag_data: list[Any], flag_option: str = "", username: str = "", ) -> tuple[dict[Any, Any], list[Any]]: """Deserialize components and return the corresponding row for the flagged sample. Images/audio are saved to disk as individual files. """ # Components that can have a preview on dataset repos file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"} # Generate the row corresponding to the flagged sample features = OrderedDict() row = [] for component, sample in zip(self.components, flag_data): # Get deserialized object (will save sample to disk if applicable -file, audio, image,...-) label = component.label or "" save_dir = data_dir / client_utils.strip_invalid_filename_characters(label) save_dir.mkdir(exist_ok=True, parents=True) deserialized = component.flag(sample, save_dir) if isinstance(component, gr.Image) and isinstance(sample, dict): deserialized = json.loads(deserialized)["path"] # dirty hack # Add deserialized object to row features[label] = {"dtype": "string", "_type": "Value"} try: assert Path(deserialized).exists() row.append(str(Path(deserialized).relative_to(self.dataset_dir))) except (AssertionError, TypeError, ValueError): deserialized = "" if deserialized is None else str(deserialized) row.append(deserialized) # If component is eligible for a preview, add the URL of the file # Be mindful that images and audio can be None if isinstance(component, tuple(file_preview_types)): # type: ignore for _component, _type in file_preview_types.items(): if isinstance(component, _component): features[label + " file"] = {"_type": _type} break if deserialized: path_in_repo = str( # returned filepath is absolute, we want it relative to compute URL Path(deserialized).relative_to(self.dataset_dir) ).replace("\\", "/") row.append( huggingface_hub.hf_hub_url( repo_id=self.dataset_id, filename=path_in_repo, repo_type="dataset", ) ) else: row.append("") features["flag"] = {"dtype": "string", "_type": "Value"} features["username"] = {"dtype": "string", "_type": "Value"} row.append(flag_option) row.append(username) return features, row