File size: 3,459 Bytes
e921d65
955daea
 
 
e921d65
 
8e60091
 
 
 
 
 
e921d65
 
 
8e60091
 
955daea
 
e921d65
 
8e60091
 
 
 
 
 
e921d65
 
 
 
 
 
 
 
4725ead
955daea
e921d65
 
955daea
 
e921d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54f19a
e921d65
955daea
e921d65
 
 
 
 
 
 
 
 
955daea
 
e921d65
 
955daea
 
 
 
e921d65
955daea
e921d65
955daea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
from huggingface_hub import get_token
from utils import load_model, load_image_from_url, inference, load_badges
from flagging import myHuggingFaceDatasetSaver


TITLE = """
<h1> RGB Detection Demo </h1>
<p align="center">
Give it a try! Upload an image or enter a URL to an image and click
<code>Submit</code>.
</p>
"""

NOTICE = """
See something off? Your feedback makes a difference! Let us know by
flagging any outcomes that don't seem right. Just click on `Flag`
to submit the image for review. Note that by clicking `Flag`, you
agree to the use of your image for A.I. improvement purposes.
"""

css = """
h1 {
    text-align: center;
    display: block;
}
"""

model = load_model("SEA-AI/yolov5n6-RGB", img_size=1280)
model.conf = 0.25
model.iou = 0.4
model.max_det = 100
model.agnostic = True  # NMS class-agnostic

# This callback will be used to flag images
dataset_name = "SEA-AI/crowdsourced-sea-images"
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name)

with gr.Blocks(css=css) as demo:
    badges = gr.HTML(load_badges(dataset_name, trials=1))
    title = gr.HTML(TITLE)

    with gr.Row():
        with gr.Column():
            img_input = gr.Image(label="input", interactive=True)
            img_url = gr.Textbox(
                lines=1,
                placeholder="or enter URL to image here",
                label="input_url",
                show_label=False,
            )
            with gr.Row():
                clear = gr.ClearButton()
                submit = gr.Button("Submit", variant="primary")
        with gr.Column():
            img_output = gr.Image(
                label="output", interactive=False, show_share_button=True
            )
            flag = gr.Button("Flag", visible=False)
            notice = gr.Markdown(value=NOTICE, visible=False)

    gr.Examples(
        examples=[
            "https://images.pexels.com/photos/273886/pexels-photo-273886.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2",
            "https://images.pexels.com/photos/913111/pexels-photo-913111.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2",
            "https://images.pexels.com/photos/88517/pexels-photo-88517.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2",
        ],
        inputs=img_input,
        outputs=img_output,
        fn=lambda image: inference(model, image),
        cache_examples=True,
    )

    # add components to clear
    clear.add([img_input, img_url, img_output])

    # event listeners
    img_url.change(load_image_from_url, [img_url], img_input)
    submit.click(lambda image: inference(model, image), [img_input], img_output)

    # event listeners with decorators
    @img_output.change(inputs=[img_output], outputs=[flag, notice])
    def show_hide(img_output):
        visible = img_output is not None
        return {
            flag: gr.Button("Flag", visible=visible),
            notice: gr.Markdown(value=NOTICE, visible=visible),
        }

    # This needs to be called prior to the first call to callback.flag()
    hf_writer.setup([img_input], "flagged")
    img_input.flag

    # We can choose which components to flag (in this case, we'll flag all)
    flag.click(lambda: gr.Info("Thank you for contributing!")).then(
        lambda *args: hf_writer.flag(args),
        [img_input, flag],
        [],
        preprocess=False,
    ).then(lambda: load_badges(dataset_name), [], badges)

if __name__ == "__main__":
    demo.queue().launch()