File size: 3,377 Bytes
955daea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import json
from collections import OrderedDict
from pathlib import Path
from typing import Any
import gradio as gr
from gradio.flagging import HuggingFaceDatasetSaver, client_utils
import huggingface_hub

class myHuggingFaceDatasetSaver(HuggingFaceDatasetSaver):
    """
    Custom HuggingFaceDatasetSaver to save images/audio to disk.
    Gradio's implementation seems to have a bug.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
    
    def _deserialize_components(
        self,
        data_dir: Path,
        flag_data: list[Any],
        flag_option: str = "",
        username: str = "",
    ) -> tuple[dict[Any, Any], list[Any]]:
        """Deserialize components and return the corresponding row for the flagged sample.

        Images/audio are saved to disk as individual files.
        """
        # Components that can have a preview on dataset repos
        file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"}

        # Generate the row corresponding to the flagged sample
        features = OrderedDict()
        row = []
        for component, sample in zip(self.components, flag_data):
            # Get deserialized object (will save sample to disk if applicable -file, audio, image,...-)
            label = component.label or ""
            save_dir = data_dir / client_utils.strip_invalid_filename_characters(label)
            save_dir.mkdir(exist_ok=True, parents=True)
            deserialized = component.flag(sample, save_dir)
            if isinstance(component, gr.Image) and isinstance(sample, dict):
                deserialized = json.loads(deserialized)['path']  # dirty hack

            # Add deserialized object to row
            features[label] = {"dtype": "string", "_type": "Value"}
            try:
                assert Path(deserialized).exists()
                row.append(str(Path(deserialized).relative_to(self.dataset_dir)))
            except (AssertionError, TypeError, ValueError):
                deserialized = "" if deserialized is None else str(deserialized)
                row.append(deserialized)

            # If component is eligible for a preview, add the URL of the file
            # Be mindful that images and audio can be None
            if isinstance(component, tuple(file_preview_types)):  # type: ignore
                for _component, _type in file_preview_types.items():
                    if isinstance(component, _component):
                        features[label + " file"] = {"_type": _type}
                        break
                if deserialized:
                    path_in_repo = str(  # returned filepath is absolute, we want it relative to compute URL
                        Path(deserialized).relative_to(self.dataset_dir)
                    ).replace("\\", "/")
                    row.append(
                        huggingface_hub.hf_hub_url(
                            repo_id=self.dataset_id,
                            filename=path_in_repo,
                            repo_type="dataset",
                        )
                    )
                else:
                    row.append("")
        features["flag"] = {"dtype": "string", "_type": "Value"}
        features["username"] = {"dtype": "string", "_type": "Value"}
        row.append(flag_option)
        row.append(username)
        return features, row