Spaces:
Running
Running
File size: 3,211 Bytes
869f4d7 e921d65 955daea e921d65 8e60091 e921d65 8e60091 955daea e921d65 8e60091 e921d65 869f4d7 e921d65 4725ead 955daea e921d65 955daea e921d65 869f4d7 e921d65 c54f19a e921d65 955daea e921d65 869f4d7 e921d65 955daea e921d65 955daea 869f4d7 955daea e921d65 869f4d7 e921d65 955daea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import glob
import gradio as gr
from huggingface_hub import get_token
from utils import load_model, load_image_from_url, inference, load_badges
from flagging import myHuggingFaceDatasetSaver
TITLE = """
<h1> RGB Detection Demo </h1>
<p align="center">
Give it a try! Upload an image or enter a URL to an image and click
<code>Submit</code>.
</p>
"""
NOTICE = """
See something off? Your feedback makes a difference! Let us know by
flagging any outcomes that don't seem right. Just click on `Flag`
to submit the image for review. Note that by clicking `Flag`, you
agree to the use of your image for A.I. improvement purposes.
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
model = load_model("SEA-AI/yolov5n6-RGB", img_size=1280)
model.conf = 0.2
model.iou = 0.4
model.max_det = 100
model.agnostic = True # NMS class-agnostic
# This callback will be used to flag images
dataset_name = "SEA-AI/crowdsourced-sea-images"
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name)
with gr.Blocks(css=css) as demo:
badges = gr.HTML(load_badges(dataset_name, trials=1))
title = gr.HTML(TITLE)
with gr.Row():
with gr.Column():
img_input = gr.Image(label="input", interactive=True)
img_url = gr.Textbox(
lines=1,
placeholder="or enter URL to image here",
label="input_url",
show_label=False,
)
with gr.Row():
clear = gr.ClearButton()
submit = gr.Button("Submit", variant="primary")
with gr.Column():
img_output = gr.Image(
label="output", interactive=False, show_share_button=True
)
flag = gr.Button("Flag", visible=False)
notice = gr.Markdown(value=NOTICE, visible=False)
gr.Examples(
examples=glob.glob("examples/*.jpg"),
inputs=img_input,
outputs=img_output,
fn=lambda image: inference(model, image),
cache_examples=True,
)
# add components to clear
clear.add([img_input, img_url, img_output])
# event listeners
img_url.change(load_image_from_url, [img_url], img_input)
submit.click(lambda image: inference(model, image), [img_input], img_output)
# event listeners with decorators
@img_output.change(inputs=[img_output], outputs=[flag, notice])
def show_hide(img_output):
visible = img_output is not None
return {
flag: gr.Button("Flag", visible=visible, interactive=True),
notice: gr.Markdown(value=NOTICE, visible=visible),
}
# This needs to be called prior to the first call to callback.flag()
hf_writer.setup([img_input], "flagged")
# We can choose which components to flag (in this case, we'll flag all)
flag.click(lambda: gr.Info("Thank you for contributing!")).then(
lambda: {flag: gr.Button("Flag", interactive=False)}, [], [flag]
).then(
lambda *args: hf_writer.flag(args),
[img_input, flag],
[],
preprocess=False,
).then(
lambda: load_badges(dataset_name), [], badges
)
if __name__ == "__main__":
demo.queue().launch()
|