File size: 3,211 Bytes
869f4d7
e921d65
955daea
 
 
e921d65
 
8e60091
 
 
 
 
 
e921d65
 
 
8e60091
 
955daea
 
e921d65
 
8e60091
 
 
 
 
 
e921d65
 
869f4d7
e921d65
 
 
 
 
4725ead
955daea
e921d65
 
955daea
 
e921d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
869f4d7
e921d65
 
 
 
 
 
 
 
 
 
 
c54f19a
e921d65
955daea
e921d65
 
 
 
869f4d7
e921d65
 
 
 
955daea
e921d65
 
955daea
869f4d7
 
955daea
 
 
e921d65
869f4d7
 
 
e921d65
955daea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import glob
import gradio as gr
from huggingface_hub import get_token
from utils import load_model, load_image_from_url, inference, load_badges
from flagging import myHuggingFaceDatasetSaver


TITLE = """
<h1> RGB Detection Demo </h1>
<p align="center">
Give it a try! Upload an image or enter a URL to an image and click
<code>Submit</code>.
</p>
"""

NOTICE = """
See something off? Your feedback makes a difference! Let us know by
flagging any outcomes that don't seem right. Just click on `Flag`
to submit the image for review. Note that by clicking `Flag`, you
agree to the use of your image for A.I. improvement purposes.
"""

css = """
h1 {
    text-align: center;
    display: block;
}
"""

model = load_model("SEA-AI/yolov5n6-RGB", img_size=1280)
model.conf = 0.2
model.iou = 0.4
model.max_det = 100
model.agnostic = True  # NMS class-agnostic

# This callback will be used to flag images
dataset_name = "SEA-AI/crowdsourced-sea-images"
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name)

with gr.Blocks(css=css) as demo:
    badges = gr.HTML(load_badges(dataset_name, trials=1))
    title = gr.HTML(TITLE)

    with gr.Row():
        with gr.Column():
            img_input = gr.Image(label="input", interactive=True)
            img_url = gr.Textbox(
                lines=1,
                placeholder="or enter URL to image here",
                label="input_url",
                show_label=False,
            )
            with gr.Row():
                clear = gr.ClearButton()
                submit = gr.Button("Submit", variant="primary")
        with gr.Column():
            img_output = gr.Image(
                label="output", interactive=False, show_share_button=True
            )
            flag = gr.Button("Flag", visible=False)
            notice = gr.Markdown(value=NOTICE, visible=False)

    gr.Examples(
        examples=glob.glob("examples/*.jpg"),
        inputs=img_input,
        outputs=img_output,
        fn=lambda image: inference(model, image),
        cache_examples=True,
    )

    # add components to clear
    clear.add([img_input, img_url, img_output])

    # event listeners
    img_url.change(load_image_from_url, [img_url], img_input)
    submit.click(lambda image: inference(model, image), [img_input], img_output)

    # event listeners with decorators
    @img_output.change(inputs=[img_output], outputs=[flag, notice])
    def show_hide(img_output):
        visible = img_output is not None
        return {
            flag: gr.Button("Flag", visible=visible, interactive=True),
            notice: gr.Markdown(value=NOTICE, visible=visible),
        }

    # This needs to be called prior to the first call to callback.flag()
    hf_writer.setup([img_input], "flagged")

    # We can choose which components to flag (in this case, we'll flag all)
    flag.click(lambda: gr.Info("Thank you for contributing!")).then(
        lambda: {flag: gr.Button("Flag", interactive=False)}, [], [flag]
    ).then(
        lambda *args: hf_writer.flag(args),
        [img_input, flag],
        [],
        preprocess=False,
    ).then(
        lambda: load_badges(dataset_name), [], badges
    )

if __name__ == "__main__":
    demo.queue().launch()