Spaces:
Running
Running
Commit
·
69f95c1
1
Parent(s):
aa9ad30
HuggingFaceDatasetSaver changes
Browse files- app.py +2 -2
- flagging.py +282 -4
app.py
CHANGED
@@ -14,7 +14,7 @@ from utils import (
|
|
14 |
load_badges,
|
15 |
FlaggedCounter,
|
16 |
)
|
17 |
-
from flagging import
|
18 |
from model_yolov5 import load_model, inference
|
19 |
|
20 |
|
@@ -50,7 +50,7 @@ model.agnostic = True # NMS class-agnostic
|
|
50 |
|
51 |
# Flagging
|
52 |
dataset_name = "SEA-AI/crowdsourced-sea-images"
|
53 |
-
hf_writer =
|
54 |
flagged_counter = FlaggedCounter(dataset_name)
|
55 |
|
56 |
|
|
|
14 |
load_badges,
|
15 |
FlaggedCounter,
|
16 |
)
|
17 |
+
from flagging import HuggingFaceDatasetSaver
|
18 |
from model_yolov5 import load_model, inference
|
19 |
|
20 |
|
|
|
50 |
|
51 |
# Flagging
|
52 |
dataset_name = "SEA-AI/crowdsourced-sea-images"
|
53 |
+
hf_writer = HuggingFaceDatasetSaver(get_token(), dataset_name)
|
54 |
flagged_counter = FlaggedCounter(dataset_name)
|
55 |
|
56 |
|
flagging.py
CHANGED
@@ -1,12 +1,290 @@
|
|
1 |
-
import
|
2 |
import json
|
|
|
3 |
from collections import OrderedDict
|
4 |
from pathlib import Path
|
5 |
-
from typing import Any
|
6 |
-
|
7 |
-
|
8 |
import huggingface_hub
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
class myHuggingFaceDatasetSaver(HuggingFaceDatasetSaver):
|
12 |
"""
|
|
|
1 |
+
import csv
|
2 |
import json
|
3 |
+
import uuid
|
4 |
from collections import OrderedDict
|
5 |
from pathlib import Path
|
6 |
+
from typing import TYPE_CHECKING, Any, Sequence
|
7 |
+
|
8 |
+
import filelock
|
9 |
import huggingface_hub
|
10 |
|
11 |
+
import gradio as gr
|
12 |
+
from gradio import utils
|
13 |
+
from gradio.flagging import client_utils, FlaggingCallback
|
14 |
+
from gradio_client.documentation import document
|
15 |
+
from gradio.components import Component
|
16 |
+
|
17 |
+
|
18 |
+
@document()
|
19 |
+
class HuggingFaceDatasetSaver(FlaggingCallback):
|
20 |
+
"""
|
21 |
+
A callback that saves each flagged sample (both the input and output data) to a HuggingFace dataset.
|
22 |
+
|
23 |
+
Example:
|
24 |
+
import gradio as gr
|
25 |
+
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes")
|
26 |
+
def image_classifier(inp):
|
27 |
+
return {'cat': 0.3, 'dog': 0.7}
|
28 |
+
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
|
29 |
+
allow_flagging="manual", flagging_callback=hf_writer)
|
30 |
+
Guides: using-flagging
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
hf_token: str,
|
36 |
+
dataset_name: str,
|
37 |
+
private: bool = False,
|
38 |
+
info_filename: str = "dataset_info.json",
|
39 |
+
separate_dirs: bool = False,
|
40 |
+
):
|
41 |
+
"""
|
42 |
+
Parameters:
|
43 |
+
hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset (defaults to the registered one).
|
44 |
+
dataset_name: The repo_id of the dataset to save the data to, e.g. "image-classifier-1" or "username/image-classifier-1".
|
45 |
+
private: Whether the dataset should be private (defaults to False).
|
46 |
+
info_filename: The name of the file to save the dataset info (defaults to "dataset_infos.json").
|
47 |
+
separate_dirs: If True, each flagged item will be saved in a separate directory. This makes the flagging more robust to concurrent editing, but may be less convenient to use.
|
48 |
+
"""
|
49 |
+
self.hf_token = hf_token
|
50 |
+
self.dataset_id = dataset_name # TODO: rename parameter (but ensure backward compatibility somehow)
|
51 |
+
self.dataset_private = private
|
52 |
+
self.info_filename = info_filename
|
53 |
+
self.separate_dirs = separate_dirs
|
54 |
+
|
55 |
+
def setup(self, components: Sequence[Component], flagging_dir: str):
|
56 |
+
"""
|
57 |
+
Params:
|
58 |
+
flagging_dir (str): local directory where the dataset is cloned,
|
59 |
+
updated, and pushed from.
|
60 |
+
"""
|
61 |
+
# Setup dataset on the Hub
|
62 |
+
self.dataset_id = huggingface_hub.create_repo(
|
63 |
+
repo_id=self.dataset_id,
|
64 |
+
token=self.hf_token,
|
65 |
+
private=self.dataset_private,
|
66 |
+
repo_type="dataset",
|
67 |
+
exist_ok=True,
|
68 |
+
).repo_id
|
69 |
+
path_glob = "**/*.jsonl" if self.separate_dirs else "data.csv"
|
70 |
+
huggingface_hub.metadata_update(
|
71 |
+
repo_id=self.dataset_id,
|
72 |
+
repo_type="dataset",
|
73 |
+
metadata={
|
74 |
+
"configs": [
|
75 |
+
{
|
76 |
+
"config_name": "default",
|
77 |
+
"data_files": [{"split": "train", "path": path_glob}],
|
78 |
+
}
|
79 |
+
]
|
80 |
+
},
|
81 |
+
overwrite=True,
|
82 |
+
token=self.hf_token,
|
83 |
+
)
|
84 |
+
|
85 |
+
# Setup flagging dir
|
86 |
+
self.components = components
|
87 |
+
self.dataset_dir = (
|
88 |
+
Path(flagging_dir).absolute() / self.dataset_id.split("/")[-1]
|
89 |
+
)
|
90 |
+
self.dataset_dir.mkdir(parents=True, exist_ok=True)
|
91 |
+
self.infos_file = self.dataset_dir / self.info_filename
|
92 |
+
|
93 |
+
# Download remote files to local
|
94 |
+
remote_files = [self.info_filename]
|
95 |
+
if not self.separate_dirs:
|
96 |
+
# No separate dirs => means all data is in the same CSV file => download it to get its current content
|
97 |
+
remote_files.append("data.csv")
|
98 |
+
|
99 |
+
for filename in remote_files:
|
100 |
+
try:
|
101 |
+
huggingface_hub.hf_hub_download(
|
102 |
+
repo_id=self.dataset_id,
|
103 |
+
repo_type="dataset",
|
104 |
+
filename=filename,
|
105 |
+
local_dir=self.dataset_dir,
|
106 |
+
token=self.hf_token,
|
107 |
+
)
|
108 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
109 |
+
pass
|
110 |
+
|
111 |
+
def flag(
|
112 |
+
self,
|
113 |
+
flag_data: list[Any],
|
114 |
+
flag_option: str = "",
|
115 |
+
username: str | None = None,
|
116 |
+
) -> int:
|
117 |
+
if self.separate_dirs:
|
118 |
+
# JSONL files to support dataset preview on the Hub
|
119 |
+
unique_id = str(uuid.uuid4())
|
120 |
+
components_dir = self.dataset_dir / unique_id
|
121 |
+
data_file = components_dir / "metadata.jsonl"
|
122 |
+
path_in_repo = unique_id # upload in sub folder (safer for concurrency)
|
123 |
+
else:
|
124 |
+
# Unique CSV file
|
125 |
+
components_dir = self.dataset_dir
|
126 |
+
data_file = components_dir / "data.csv"
|
127 |
+
path_in_repo = None # upload at root level
|
128 |
+
|
129 |
+
return self._flag_in_dir(
|
130 |
+
data_file=data_file,
|
131 |
+
components_dir=components_dir,
|
132 |
+
path_in_repo=path_in_repo,
|
133 |
+
flag_data=flag_data,
|
134 |
+
flag_option=flag_option,
|
135 |
+
username=username or "",
|
136 |
+
)
|
137 |
+
|
138 |
+
def _flag_in_dir(
|
139 |
+
self,
|
140 |
+
data_file: Path,
|
141 |
+
components_dir: Path,
|
142 |
+
path_in_repo: str | None,
|
143 |
+
flag_data: list[Any],
|
144 |
+
flag_option: str = "",
|
145 |
+
username: str = "",
|
146 |
+
) -> int:
|
147 |
+
# Deserialize components (write images/audio to files)
|
148 |
+
features, row = self._deserialize_components(
|
149 |
+
components_dir, flag_data, flag_option, username
|
150 |
+
)
|
151 |
+
|
152 |
+
# Write generic info to dataset_infos.json + upload
|
153 |
+
with filelock.FileLock(str(self.infos_file) + ".lock"):
|
154 |
+
if not self.infos_file.exists():
|
155 |
+
self.infos_file.write_text(
|
156 |
+
json.dumps({"flagged": {"features": features}})
|
157 |
+
)
|
158 |
+
|
159 |
+
huggingface_hub.upload_file(
|
160 |
+
repo_id=self.dataset_id,
|
161 |
+
repo_type="dataset",
|
162 |
+
token=self.hf_token,
|
163 |
+
path_in_repo=self.infos_file.name,
|
164 |
+
path_or_fileobj=self.infos_file,
|
165 |
+
)
|
166 |
+
|
167 |
+
headers = list(features.keys())
|
168 |
+
|
169 |
+
if not self.separate_dirs:
|
170 |
+
with filelock.FileLock(components_dir / ".lock"):
|
171 |
+
sample_nb = self._save_as_csv(data_file, headers=headers, row=row)
|
172 |
+
sample_name = str(sample_nb)
|
173 |
+
huggingface_hub.upload_folder(
|
174 |
+
repo_id=self.dataset_id,
|
175 |
+
repo_type="dataset",
|
176 |
+
commit_message=f"Flagged sample #{sample_name}",
|
177 |
+
path_in_repo=path_in_repo,
|
178 |
+
ignore_patterns="*.lock",
|
179 |
+
folder_path=components_dir,
|
180 |
+
token=self.hf_token,
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
sample_name = self._save_as_jsonl(data_file, headers=headers, row=row)
|
184 |
+
sample_nb = len(
|
185 |
+
[path for path in self.dataset_dir.iterdir() if path.is_dir()]
|
186 |
+
)
|
187 |
+
huggingface_hub.upload_folder(
|
188 |
+
repo_id=self.dataset_id,
|
189 |
+
repo_type="dataset",
|
190 |
+
commit_message=f"Flagged sample #{sample_name}",
|
191 |
+
path_in_repo=path_in_repo,
|
192 |
+
ignore_patterns="*.lock",
|
193 |
+
folder_path=components_dir,
|
194 |
+
token=self.hf_token,
|
195 |
+
)
|
196 |
+
|
197 |
+
return sample_nb
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def _save_as_csv(data_file: Path, headers: list[str], row: list[Any]) -> int:
|
201 |
+
"""Save data as CSV and return the sample name (row number)."""
|
202 |
+
is_new = not data_file.exists()
|
203 |
+
|
204 |
+
with data_file.open("a", newline="", encoding="utf-8") as csvfile:
|
205 |
+
writer = csv.writer(csvfile)
|
206 |
+
|
207 |
+
# Write CSV headers if new file
|
208 |
+
if is_new:
|
209 |
+
writer.writerow(utils.sanitize_list_for_csv(headers))
|
210 |
+
|
211 |
+
# Write CSV row for flagged sample
|
212 |
+
writer.writerow(utils.sanitize_list_for_csv(row))
|
213 |
+
|
214 |
+
with data_file.open(encoding="utf-8") as csvfile:
|
215 |
+
return sum(1 for _ in csv.reader(csvfile)) - 1
|
216 |
+
|
217 |
+
@staticmethod
|
218 |
+
def _save_as_jsonl(data_file: Path, headers: list[str], row: list[Any]) -> str:
|
219 |
+
"""Save data as JSONL and return the sample name (uuid)."""
|
220 |
+
Path.mkdir(data_file.parent, parents=True, exist_ok=True)
|
221 |
+
with open(data_file, "w", encoding="utf-8") as f:
|
222 |
+
json.dump(dict(zip(headers, row)), f)
|
223 |
+
return data_file.parent.name
|
224 |
+
|
225 |
+
def _deserialize_components(
|
226 |
+
self,
|
227 |
+
data_dir: Path,
|
228 |
+
flag_data: list[Any],
|
229 |
+
flag_option: str = "",
|
230 |
+
username: str = "",
|
231 |
+
) -> tuple[dict[Any, Any], list[Any]]:
|
232 |
+
"""Deserialize components and return the corresponding row for the flagged sample.
|
233 |
+
|
234 |
+
Images/audio are saved to disk as individual files.
|
235 |
+
"""
|
236 |
+
# Components that can have a preview on dataset repos
|
237 |
+
file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"}
|
238 |
+
|
239 |
+
# Generate the row corresponding to the flagged sample
|
240 |
+
features = OrderedDict()
|
241 |
+
row = []
|
242 |
+
for component, sample in zip(self.components, flag_data):
|
243 |
+
# Get deserialized object (will save sample to disk if applicable -file, audio, image,...-)
|
244 |
+
label = component.label or ""
|
245 |
+
save_dir = data_dir / client_utils.strip_invalid_filename_characters(label)
|
246 |
+
save_dir.mkdir(exist_ok=True, parents=True)
|
247 |
+
deserialized = utils.simplify_file_data_in_str(
|
248 |
+
component.flag(sample, save_dir)
|
249 |
+
)
|
250 |
+
|
251 |
+
# Add deserialized object to row
|
252 |
+
features[label] = {"dtype": "string", "_type": "Value"}
|
253 |
+
try:
|
254 |
+
deserialized_path = Path(deserialized)
|
255 |
+
if not deserialized_path.exists():
|
256 |
+
raise FileNotFoundError(f"File {deserialized} not found")
|
257 |
+
row.append(str(deserialized_path.relative_to(self.dataset_dir)))
|
258 |
+
except (FileNotFoundError, TypeError, ValueError, OSError):
|
259 |
+
deserialized = "" if deserialized is None else str(deserialized)
|
260 |
+
row.append(deserialized)
|
261 |
+
|
262 |
+
# If component is eligible for a preview, add the URL of the file
|
263 |
+
# Be mindful that images and audio can be None
|
264 |
+
if isinstance(component, tuple(file_preview_types)): # type: ignore
|
265 |
+
for _component, _type in file_preview_types.items():
|
266 |
+
if isinstance(component, _component):
|
267 |
+
features[label + " file"] = {"_type": _type}
|
268 |
+
break
|
269 |
+
if deserialized:
|
270 |
+
path_in_repo = str( # returned filepath is absolute, we want it relative to compute URL
|
271 |
+
Path(deserialized).relative_to(self.dataset_dir)
|
272 |
+
).replace("\\", "/")
|
273 |
+
row.append(
|
274 |
+
huggingface_hub.hf_hub_url(
|
275 |
+
repo_id=self.dataset_id,
|
276 |
+
filename=path_in_repo,
|
277 |
+
repo_type="dataset",
|
278 |
+
)
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
row.append("")
|
282 |
+
features["flag"] = {"dtype": "string", "_type": "Value"}
|
283 |
+
features["username"] = {"dtype": "string", "_type": "Value"}
|
284 |
+
row.append(flag_option)
|
285 |
+
row.append(username)
|
286 |
+
return features, row
|
287 |
+
|
288 |
|
289 |
class myHuggingFaceDatasetSaver(HuggingFaceDatasetSaver):
|
290 |
"""
|