Spaces:
Running
Running
Commit
·
a378000
1
Parent(s):
869f4d7
Refactor app.py and utils.py
Browse files
app.py
CHANGED
@@ -1,7 +1,13 @@
|
|
1 |
import glob
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import get_token
|
4 |
-
from utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from flagging import myHuggingFaceDatasetSaver
|
6 |
|
7 |
|
@@ -33,12 +39,19 @@ model.iou = 0.4
|
|
33 |
model.max_det = 100
|
34 |
model.agnostic = True # NMS class-agnostic
|
35 |
|
36 |
-
#
|
37 |
dataset_name = "SEA-AI/crowdsourced-sea-images"
|
38 |
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name)
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
title = gr.HTML(TITLE)
|
43 |
|
44 |
with gr.Row():
|
@@ -68,17 +81,22 @@ with gr.Blocks(css=css) as demo:
|
|
68 |
cache_examples=True,
|
69 |
)
|
70 |
|
71 |
-
# add components to clear
|
72 |
clear.add([img_input, img_url, img_output])
|
73 |
|
74 |
# event listeners
|
75 |
img_url.change(load_image_from_url, [img_url], img_input)
|
76 |
-
submit.click(
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
# event listeners with decorators
|
79 |
-
@img_output.change(inputs=[img_output], outputs=[flag, notice])
|
80 |
-
def show_hide(
|
81 |
-
visible =
|
82 |
return {
|
83 |
flag: gr.Button("Flag", visible=visible, interactive=True),
|
84 |
notice: gr.Markdown(value=NOTICE, visible=visible),
|
@@ -87,17 +105,21 @@ with gr.Blocks(css=css) as demo:
|
|
87 |
# This needs to be called prior to the first call to callback.flag()
|
88 |
hf_writer.setup([img_input], "flagged")
|
89 |
|
90 |
-
#
|
91 |
-
flag.click(lambda: gr.Info("Thank you for contributing!")).then(
|
92 |
-
lambda: {flag: gr.Button("Flag", interactive=False)}, [], [flag]
|
93 |
).then(
|
94 |
lambda *args: hf_writer.flag(args),
|
95 |
[img_input, flag],
|
96 |
[],
|
97 |
preprocess=False,
|
|
|
98 |
).then(
|
99 |
-
lambda: load_badges(
|
100 |
)
|
101 |
|
|
|
|
|
|
|
102 |
if __name__ == "__main__":
|
103 |
-
demo.queue().launch()
|
|
|
1 |
import glob
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import get_token
|
4 |
+
from utils import (
|
5 |
+
load_model,
|
6 |
+
load_image_from_url,
|
7 |
+
inference,
|
8 |
+
load_badges,
|
9 |
+
count_flagged_images_from_csv,
|
10 |
+
)
|
11 |
from flagging import myHuggingFaceDatasetSaver
|
12 |
|
13 |
|
|
|
39 |
model.max_det = 100
|
40 |
model.agnostic = True # NMS class-agnostic
|
41 |
|
42 |
+
# Flagging
|
43 |
dataset_name = "SEA-AI/crowdsourced-sea-images"
|
44 |
hf_writer = myHuggingFaceDatasetSaver(get_token(), dataset_name)
|
45 |
|
46 |
+
|
47 |
+
def get_flagged_count():
|
48 |
+
"""Count flagged images in dataset."""
|
49 |
+
return count_flagged_images_from_csv(dataset_name)
|
50 |
+
|
51 |
+
|
52 |
+
theme = gr.themes.Default(primary_hue=gr.themes.colors.indigo)
|
53 |
+
with gr.Blocks(theme=theme, css=css) as demo:
|
54 |
+
badges = gr.HTML(load_badges(get_flagged_count()))
|
55 |
title = gr.HTML(TITLE)
|
56 |
|
57 |
with gr.Row():
|
|
|
81 |
cache_examples=True,
|
82 |
)
|
83 |
|
84 |
+
# add components to clear when clear button is clicked
|
85 |
clear.add([img_input, img_url, img_output])
|
86 |
|
87 |
# event listeners
|
88 |
img_url.change(load_image_from_url, [img_url], img_input)
|
89 |
+
submit.click(
|
90 |
+
lambda image: inference(model, image),
|
91 |
+
[img_input],
|
92 |
+
img_output,
|
93 |
+
api_name="inference",
|
94 |
+
)
|
95 |
|
96 |
# event listeners with decorators
|
97 |
+
@img_output.change(inputs=[img_output], outputs=[flag, notice], show_api=False)
|
98 |
+
def show_hide(_img_ouput):
|
99 |
+
visible = _img_ouput is not None
|
100 |
return {
|
101 |
flag: gr.Button("Flag", visible=visible, interactive=True),
|
102 |
notice: gr.Markdown(value=NOTICE, visible=visible),
|
|
|
105 |
# This needs to be called prior to the first call to callback.flag()
|
106 |
hf_writer.setup([img_input], "flagged")
|
107 |
|
108 |
+
# Sequential logic when flag button is clicked
|
109 |
+
flag.click(lambda: gr.Info("Thank you for contributing!"), show_api=False).then(
|
110 |
+
lambda: {flag: gr.Button("Flag", interactive=False)}, [], [flag], show_api=False
|
111 |
).then(
|
112 |
lambda *args: hf_writer.flag(args),
|
113 |
[img_input, flag],
|
114 |
[],
|
115 |
preprocess=False,
|
116 |
+
show_api=False,
|
117 |
).then(
|
118 |
+
lambda: load_badges(get_flagged_count()), [], badges, show_api=False
|
119 |
)
|
120 |
|
121 |
+
# called during initial load in browser
|
122 |
+
demo.load(lambda: load_badges(get_flagged_count()), [], badges, show_api=False)
|
123 |
+
|
124 |
if __name__ == "__main__":
|
125 |
+
demo.queue().launch() # show_api=False)
|
utils.py
CHANGED
@@ -1,21 +1,24 @@
|
|
|
|
1 |
import requests
|
2 |
from io import BytesIO
|
3 |
import numpy as np
|
|
|
4 |
from PIL import Image
|
5 |
import yolov5
|
6 |
from yolov5.utils.plots import Annotator, colors
|
7 |
import gradio as gr
|
8 |
from huggingface_hub import get_token
|
9 |
-
import time
|
10 |
|
11 |
|
12 |
def load_model(model_path, img_size=640):
|
|
|
13 |
model = yolov5.load(model_path, hf_token=get_token())
|
14 |
model.img_size = img_size # add img_size attribute
|
15 |
return model
|
16 |
|
17 |
|
18 |
def load_image_from_url(url):
|
|
|
19 |
if not url: # empty or None
|
20 |
return gr.Image(interactive=True)
|
21 |
try:
|
@@ -27,6 +30,7 @@ def load_image_from_url(url):
|
|
27 |
|
28 |
|
29 |
def inference(model, image):
|
|
|
30 |
results = model(image, size=model.img_size)
|
31 |
annotator = Annotator(np.asarray(image))
|
32 |
for *box, _, cls in reversed(results.pred[0]):
|
@@ -36,7 +40,9 @@ def inference(model, image):
|
|
36 |
return annotator.im
|
37 |
|
38 |
|
39 |
-
def
|
|
|
|
|
40 |
headers = {"Authorization": f"Bearer {get_token()}"}
|
41 |
API_URL = f"https://datasets-server.huggingface.co/size?dataset={dataset_name}"
|
42 |
|
@@ -58,8 +64,15 @@ def count_flagged_images(dataset_name, trials=10):
|
|
58 |
return 0
|
59 |
|
60 |
|
61 |
-
def
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
return f"""
|
64 |
<p style="display: flex">
|
65 |
<img alt="" src="https://img.shields.io/badge/SEA.AI-beta-blue">
|
|
|
1 |
+
import time
|
2 |
import requests
|
3 |
from io import BytesIO
|
4 |
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
from PIL import Image
|
7 |
import yolov5
|
8 |
from yolov5.utils.plots import Annotator, colors
|
9 |
import gradio as gr
|
10 |
from huggingface_hub import get_token
|
|
|
11 |
|
12 |
|
13 |
def load_model(model_path, img_size=640):
|
14 |
+
"""Load model from HuggingFace Hub."""
|
15 |
model = yolov5.load(model_path, hf_token=get_token())
|
16 |
model.img_size = img_size # add img_size attribute
|
17 |
return model
|
18 |
|
19 |
|
20 |
def load_image_from_url(url):
|
21 |
+
"""Load image from URL."""
|
22 |
if not url: # empty or None
|
23 |
return gr.Image(interactive=True)
|
24 |
try:
|
|
|
30 |
|
31 |
|
32 |
def inference(model, image):
|
33 |
+
"""Run inference on image and return annotated image."""
|
34 |
results = model(image, size=model.img_size)
|
35 |
annotator = Annotator(np.asarray(image))
|
36 |
for *box, _, cls in reversed(results.pred[0]):
|
|
|
40 |
return annotator.im
|
41 |
|
42 |
|
43 |
+
def count_flagged_images_via_api(dataset_name, trials=10):
|
44 |
+
"""Count flagged images via API. Might be slow."""
|
45 |
+
|
46 |
headers = {"Authorization": f"Bearer {get_token()}"}
|
47 |
API_URL = f"https://datasets-server.huggingface.co/size?dataset={dataset_name}"
|
48 |
|
|
|
64 |
return 0
|
65 |
|
66 |
|
67 |
+
def count_flagged_images_from_csv(dataset_name):
|
68 |
+
"""Count flagged images from CSV. Fast but relies on local files."""
|
69 |
+
dataset_name = dataset_name.split("/")[-1]
|
70 |
+
df = pd.read_csv(f"./flagged/{dataset_name}/data.csv")
|
71 |
+
return len(df)
|
72 |
+
|
73 |
+
|
74 |
+
def load_badges(n):
|
75 |
+
"""Load badges."""
|
76 |
return f"""
|
77 |
<p style="display: flex">
|
78 |
<img alt="" src="https://img.shields.io/badge/SEA.AI-beta-blue">
|