kevinconka commited on
Commit
f4ef5b4
·
1 Parent(s): 1709520

Update flagging functionality in app.py and flagging.py to use metadata for user information and change dataset name to versioned format

Browse files
Files changed (2) hide show
  1. app.py +14 -5
  2. flagging.py +13 -20
app.py CHANGED
@@ -69,21 +69,26 @@ def inference(image):
69
 
70
 
71
  def flag_img_input(
72
- image: gr.Image, flag_option: str = "misdetection", username: str = "anonymous"
73
  ):
74
  """Wrapper for flagging"""
75
- logger.info("Flagging image - option: %s, user: %s", flag_option, username)
76
 
77
  # Decode blob data if necessary
78
  if is_blob_data(image):
79
  image = decode_blob_data(image)
80
 
81
- hf_writer.flag([image], flag_option=flag_option, username=username)
 
 
 
 
 
82
  logger.info("Image flagged successfully")
83
 
84
 
85
  # Flagging
86
- dataset_name = "SEA-AI/crowdsourced-sea-images"
87
  hf_writer = HuggingFaceDatasetSaver(get_token(), dataset_name)
88
  flagged_counter = FlaggedCounter(dataset_name)
89
 
@@ -148,6 +153,10 @@ with gr.Blocks(theme=theme, css=css, title="SEA.AI Vision Demo") as demo:
148
  flag: gr.Button(FLAG_TXT, interactive=True, visible=visible),
149
  notice: gr.Markdown(value=NOTICE, visible=visible),
150
  }
 
 
 
 
151
 
152
  # This needs to be called prior to the first call to callback.flag()
153
  hf_writer.setup([img_input], "flagged")
@@ -160,7 +169,7 @@ with gr.Blocks(theme=theme, css=css, title="SEA.AI Vision Demo") as demo:
160
  show_api=False,
161
  ).then(
162
  flag_img_input,
163
- [img_input],
164
  [],
165
  preprocess=False,
166
  show_api=True,
 
69
 
70
 
71
  def flag_img_input(
72
+ image: gr.Image, name: str = "misdetection", email: str = "anonymous@example.com"
73
  ):
74
  """Wrapper for flagging"""
75
+ logger.info("Flagging image - name: %s, email: %s", name, email)
76
 
77
  # Decode blob data if necessary
78
  if is_blob_data(image):
79
  image = decode_blob_data(image)
80
 
81
+ metadata = {
82
+ "name": name,
83
+ "email": email,
84
+ }
85
+
86
+ hf_writer.flag([image], metadata=metadata)
87
  logger.info("Image flagged successfully")
88
 
89
 
90
  # Flagging
91
+ dataset_name = "SEA-AI/crowdsourced-sea-images-v2"
92
  hf_writer = HuggingFaceDatasetSaver(get_token(), dataset_name)
93
  flagged_counter = FlaggedCounter(dataset_name)
94
 
 
153
  flag: gr.Button(FLAG_TXT, interactive=True, visible=visible),
154
  notice: gr.Markdown(value=NOTICE, visible=visible),
155
  }
156
+
157
+ # add hidden textbox for name and email (hacky but well...)
158
+ name = gr.Textbox(label="name", visible=False, value="anonymous")
159
+ email = gr.Textbox(label="email", visible=False, value="[email protected]")
160
 
161
  # This needs to be called prior to the first call to callback.flag()
162
  hf_writer.setup([img_input], "flagged")
 
169
  show_api=False,
170
  ).then(
171
  flag_img_input,
172
+ [img_input, name, email],
173
  [],
174
  preprocess=False,
175
  show_api=True,
flagging.py CHANGED
@@ -108,11 +108,10 @@ class HuggingFaceDatasetSaver(FlaggingCallback):
108
  except huggingface_hub.utils.EntryNotFoundError:
109
  pass
110
 
111
- def flag(
112
  self,
113
  flag_data: list[Any],
114
- flag_option: str = "",
115
- username: str | None = None,
116
  ) -> int:
117
  if self.separate_dirs:
118
  # JSONL files to support dataset preview on the Hub
@@ -131,8 +130,7 @@ class HuggingFaceDatasetSaver(FlaggingCallback):
131
  components_dir=components_dir,
132
  path_in_repo=path_in_repo,
133
  flag_data=flag_data,
134
- flag_option=flag_option,
135
- username=username or "",
136
  )
137
 
138
  def _flag_in_dir(
@@ -141,12 +139,11 @@ class HuggingFaceDatasetSaver(FlaggingCallback):
141
  components_dir: Path,
142
  path_in_repo: str | None,
143
  flag_data: list[Any],
144
- flag_option: str = "",
145
- username: str = "",
146
  ) -> int:
147
  # Deserialize components (write images/audio to files)
148
  features, row = self._deserialize_components(
149
- components_dir, flag_data, flag_option, username
150
  )
151
 
152
  # Write generic info to dataset_infos.json + upload
@@ -226,8 +223,7 @@ class HuggingFaceDatasetSaver(FlaggingCallback):
226
  self,
227
  data_dir: Path,
228
  flag_data: list[Any],
229
- flag_option: str = "",
230
- username: str = "",
231
  ) -> tuple[dict[Any, Any], list[Any]]:
232
  """Deserialize components and return the corresponding row for the flagged sample.
233
 
@@ -279,10 +275,9 @@ class HuggingFaceDatasetSaver(FlaggingCallback):
279
  )
280
  else:
281
  row.append("")
282
- features["flag"] = {"dtype": "string", "_type": "Value"}
283
- features["username"] = {"dtype": "string", "_type": "Value"}
284
- row.append(flag_option)
285
- row.append(username)
286
  return features, row
287
 
288
 
@@ -299,8 +294,7 @@ class myHuggingFaceDatasetSaver(HuggingFaceDatasetSaver):
299
  self,
300
  data_dir: Path,
301
  flag_data: list[Any],
302
- flag_option: str = "",
303
- username: str = "",
304
  ) -> tuple[dict[Any, Any], list[Any]]:
305
  """Deserialize components and return the corresponding row for the flagged sample.
306
 
@@ -353,8 +347,7 @@ class myHuggingFaceDatasetSaver(HuggingFaceDatasetSaver):
353
  )
354
  else:
355
  row.append("")
356
- features["flag"] = {"dtype": "string", "_type": "Value"}
357
- features["username"] = {"dtype": "string", "_type": "Value"}
358
- row.append(flag_option)
359
- row.append(username)
360
  return features, row
 
108
  except huggingface_hub.utils.EntryNotFoundError:
109
  pass
110
 
111
+ def flag( # pylint: disable=arguments-differ
112
  self,
113
  flag_data: list[Any],
114
+ metadata: dict[str, str] | None = None,
 
115
  ) -> int:
116
  if self.separate_dirs:
117
  # JSONL files to support dataset preview on the Hub
 
130
  components_dir=components_dir,
131
  path_in_repo=path_in_repo,
132
  flag_data=flag_data,
133
+ metadata=metadata if metadata is not None else {},
 
134
  )
135
 
136
  def _flag_in_dir(
 
139
  components_dir: Path,
140
  path_in_repo: str | None,
141
  flag_data: list[Any],
142
+ metadata: dict[str, str],
 
143
  ) -> int:
144
  # Deserialize components (write images/audio to files)
145
  features, row = self._deserialize_components(
146
+ components_dir, flag_data, metadata
147
  )
148
 
149
  # Write generic info to dataset_infos.json + upload
 
223
  self,
224
  data_dir: Path,
225
  flag_data: list[Any],
226
+ metadata: dict[str, str],
 
227
  ) -> tuple[dict[Any, Any], list[Any]]:
228
  """Deserialize components and return the corresponding row for the flagged sample.
229
 
 
275
  )
276
  else:
277
  row.append("")
278
+ for key, value in metadata.items():
279
+ features[key] = {"dtype": "string", "_type": "Value"}
280
+ row.append(value)
 
281
  return features, row
282
 
283
 
 
294
  self,
295
  data_dir: Path,
296
  flag_data: list[Any],
297
+ metadata: dict[str, str],
 
298
  ) -> tuple[dict[Any, Any], list[Any]]:
299
  """Deserialize components and return the corresponding row for the flagged sample.
300
 
 
347
  )
348
  else:
349
  row.append("")
350
+ for key, value in metadata.items():
351
+ features[key] = {"dtype": "string", "_type": "Value"}
352
+ row.append(value)
 
353
  return features, row