File size: 5,188 Bytes
aee59a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bfa969
 
aee59a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db9ef5e
 
aee59a3
 
 
db9ef5e
 
 
 
 
 
 
 
 
 
 
 
 
 
aee59a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db9ef5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3661481
db9ef5e
 
 
 
 
 
 
 
 
 
 
 
aee59a3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets

from seametrics.horizon.utils import xy_points_to_slope_midpoint, calculate_horizon_error, calculate_horizon_error_across_sequence

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""

# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION,
                                                _KWARGS_DESCRIPTION)
class horizonmetrics(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def __init__(self,
                 slope_threshold=0.1,
                 midpoint_threshold=0.1,
                 vertical_fov_degrees=25.6,
                 **kwargs):
        super().__init__(**kwargs)
        self.slope_threshold = slope_threshold
        self.midpoint_threshold = midpoint_threshold
        self.vertical_fov_degrees = vertical_fov_degrees
        self.predictions = None
        self.ground_truth_det = None
        self.slope_error_list = None
        self.midpoint_error_list = None

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('int64'),
                'references': datasets.Value('int64'),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"])

    def add(self, *, predictions, references, **kwargs):
        """
        Update the predictions and ground truth detections.

        Parameters
        ----------
        predictions : list
            List of predicted horizons.
        ground_truth_det : list
            List of ground truth horizons.

        """
        self.predictions = predictions
        self.ground_truth_det = references
        self.slope_error_list = []
        self.midpoint_error_list = []

        for annotated_horizon, proposed_horizon in zip(self.ground_truth_det,
                                                       self.predictions):
            slope_error, midpoint_error = calculate_horizon_error(
                annotated_horizon, proposed_horizon)
            self.slope_error_list.append(slope_error)
            self.midpoint_error_list.append(midpoint_error)

    def _compute(self):
        """
        Compute the horizon error across the sequence.

        Returns
        -------
        float
            The computed horizon error.

        """
        return calculate_horizon_error_across_sequence(
            self.slope_error_list, self.midpoint_error_list,
            self.slope_threshold, self.midpoint_threshold)

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass