Spaces:
Build error
Build error
File size: 5,188 Bytes
aee59a3 8bfa969 aee59a3 db9ef5e aee59a3 db9ef5e aee59a3 db9ef5e 3661481 db9ef5e aee59a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
from seametrics.horizon.utils import xy_points_to_slope_midpoint, calculate_horizon_error, calculate_horizon_error_across_sequence
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION,
_KWARGS_DESCRIPTION)
class horizonmetrics(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def __init__(self,
slope_threshold=0.1,
midpoint_threshold=0.1,
vertical_fov_degrees=25.6,
**kwargs):
super().__init__(**kwargs)
self.slope_threshold = slope_threshold
self.midpoint_threshold = midpoint_threshold
self.vertical_fov_degrees = vertical_fov_degrees
self.predictions = None
self.ground_truth_det = None
self.slope_error_list = None
self.midpoint_error_list = None
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('int64'),
'references': datasets.Value('int64'),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"])
def add(self, *, predictions, references, **kwargs):
"""
Update the predictions and ground truth detections.
Parameters
----------
predictions : list
List of predicted horizons.
ground_truth_det : list
List of ground truth horizons.
"""
self.predictions = predictions
self.ground_truth_det = references
self.slope_error_list = []
self.midpoint_error_list = []
for annotated_horizon, proposed_horizon in zip(self.ground_truth_det,
self.predictions):
slope_error, midpoint_error = calculate_horizon_error(
annotated_horizon, proposed_horizon)
self.slope_error_list.append(slope_error)
self.midpoint_error_list.append(midpoint_error)
def _compute(self):
"""
Compute the horizon error across the sequence.
Returns
-------
float
The computed horizon error.
"""
return calculate_horizon_error_across_sequence(
self.slope_error_list, self.midpoint_error_list,
self.slope_threshold, self.midpoint_threshold)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
|