Spaces:
Build error
Build error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import evaluate | |
import datasets | |
from seametrics.horizon.utils import xy_points_to_slope_midpoint, calculate_horizon_error, calculate_horizon_error_across_sequence | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
accuracy: description of the first score, | |
another_score: description of the second score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> my_new_module = evaluate.load("my_new_module") | |
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'accuracy': 1.0} | |
""" | |
# TODO: Define external resources urls if needed | |
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
class horizonmetrics(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def __init__(self, | |
slope_threshold=0.1, | |
midpoint_threshold=0.1, | |
vertical_fov_degrees=25.6, | |
**kwargs): | |
super().__init__(**kwargs) | |
self.slope_threshold = slope_threshold | |
self.midpoint_threshold = midpoint_threshold | |
self.vertical_fov_degrees = vertical_fov_degrees | |
self.predictions = None | |
self.ground_truth_det = None | |
self.slope_error_list = None | |
self.midpoint_error_list = None | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
'predictions': datasets.Value('int64'), | |
'references': datasets.Value('int64'), | |
}), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"]) | |
def add(self, *, predictions, references, **kwargs): | |
""" | |
Update the predictions and ground truth detections. | |
Parameters | |
---------- | |
predictions : list | |
List of predicted horizons. | |
ground_truth_det : list | |
List of ground truth horizons. | |
""" | |
self.predictions = predictions | |
self.ground_truth_det = references | |
self.slope_error_list = [] | |
self.midpoint_error_list = [] | |
for annotated_horizon, proposed_horizon in zip(self.ground_truth_det, | |
self.predictions): | |
slope_error, midpoint_error = calculate_horizon_error( | |
annotated_horizon, proposed_horizon) | |
self.slope_error_list.append(slope_error) | |
self.midpoint_error_list.append(midpoint_error) | |
def _compute(self): | |
""" | |
Compute the horizon error across the sequence. | |
Returns | |
------- | |
float | |
The computed horizon error. | |
""" | |
return calculate_horizon_error_across_sequence( | |
self.slope_error_list, self.midpoint_error_list, | |
self.slope_threshold, self.midpoint_threshold) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# TODO: Download external resources if needed | |
pass | |