# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import evaluate import datasets import numpy as np from seametrics.horizon.utils import * _CITATION = """\ @InProceedings{huggingface:module, title = {Horizon Metrics}, authors={huggingface, Inc.}, year={2024} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This metric is intended to calculate horizon prediction metrics.""" # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions for each image. Each prediction should be a nested array like this: - [[x1, y1], [x2, y2]] references: list of references for each image. Each reference should be a nested array like this: - [[x1, y1], [x2, y2]] Returns: dict containing following metrics: 'average_slope_error': Measures the average difference in slope between the predicted and ground truth horizon. 'average_midpoint_error': Calculates the average difference in midpoint position between the predicted and ground truth horizon. 'stddev_slope_error': Indicates the variability of errors in slope between the predicted and ground truth horizon. 'stddev_midpoint_error': Quantifies the variability of errors in midpoint position between the predicted and ground truth horizon. 'max_slope_error': Represents the maximum difference in slope between the predicted and ground truth horizon. 'max_midpoint_error': Indicates the maximum difference in midpoint position between the predicted and ground truth horizon. 'num_slope_error_jumps': Calculates the differences between errors in successive frames for the slope. It then counts the number of jumps in these errors by comparing the absolute differences to a specified threshold. 'num_midpoint_error_jumps': Calculates the differences between errors in successive frames for the midpoint. It then counts the number of jumps in these errors by comparing the absolute differences to a specified threshold. Examples: >>> ground_truth_points = [[[0.0, 0.5384765625], [1.0, 0.4931640625]], [[0.0, 0.53796875], [1.0, 0.4928515625]], [[0.0, 0.5374609375], [1.0, 0.4925390625]], [[0.0, 0.536953125], [1.0, 0.4922265625]], [[0.0, 0.5364453125], [1.0, 0.4919140625]]] >>> prediction_points = [[[0.0, 0.5428930956049597], [1.0, 0.4642497615378973]], [[0.0, 0.5428930956049597], [1.0, 0.4642497615378973]], [[0.0, 0.523573113510805], [1.0, 0.47642688648919496]], [[0.0, 0.5200016849393765], [1.0, 0.4728554579177664]], [[0.0, 0.523573113510805], [1.0, 0.47642688648919496]]] >>> module = evaluate.load("SEA-AI/horizon-metrics", vertical_fov_degrees=25.6, height=512, roll_threshold=0.5, pitch_threshold=0.1) >>> module.add(predictions=ground_truth_points, references=prediction_points) >>> module.compute() >>> {'average_slope_error': 0.014823194839790999, 'average_midpoint_error': 0.014285714285714301, 'stddev_slope_error': 0.01519178791378349, 'stddev_midpoint_error': 0.0022661781575342445, 'max_slope_error': 0.033526146567062376, 'max_midpoint_error': 0.018161272321428612, 'num_slope_error_jumps': 1, 'num_midpoint_error_jumps': 1} """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class HorizonMetrics(evaluate.Metric): """ HorizonMetrics is a metric class that calculates horizon prediction metrics. Args: vertical_fov_degrees (float): Vertical field of view in degrees. height (int): Height of the image. roll_threshold (float, optional): Threshold for roll angle. Defaults to 0.5. pitch_threshold (float, optional): Threshold for pitch angle. Defaults to 0.1. **kwargs: Additional keyword arguments. Attributes: slope_threshold (float): Threshold for slope calculated from roll threshold. midpoint_threshold (float): Threshold for midpoint calculated from pitch threshold. predictions (list): List of predicted horizons. ground_truth_det (list): List of ground truth horizons. slope_error_list (list): List of slope errors. midpoint_error_list (list): List of midpoint errors. Methods: _info(): Returns the metric information. add(predictions, references, **kwargs): Updates the predictions and ground truth detections. _compute(predictions, references, **kwargs): Computes the horizon error across the sequence. """ def __init__(self, vertical_fov_degrees: Union[float, int, None], height: float, roll_threshold=0.5, pitch_threshold=0.1, **kwargs): super().__init__(**kwargs) self.slope_threshold = roll_to_slope(roll_threshold) self.midpoint_threshold = pitch_to_midpoint(pitch_threshold, vertical_fov_degrees) self.predictions = None self.ground_truth_det = None self.slope_error_list = [] self.midpoint_error_list = [] self.height = height self.vertical_fov_degrees = vertical_fov_degrees def _info(self): """ Returns the metric information. Returns: MetricInfo: The metric information. """ return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'predictions': datasets.Sequence( datasets.Sequence( datasets.Sequence(datasets.Value("float")))), 'references': datasets.Sequence( datasets.Sequence( datasets.Sequence(datasets.Value("float")))), }), codebase_urls=["http://github.com/path/to/codebase/of/new_module"]) def add(self, *, predictions, references, **kwargs): """ Updates the predictions and ground truth detections. Parameters: predictions (list): List of predicted horizons. references (list): List of ground truth horizons. **kwargs: Additional keyword arguments. """ super(evaluate.Metric, self).add(prediction=predictions, references=references, **kwargs) self.predictions = predictions self.ground_truth_det = references def _compute(self, *, predictions, references, **kwargs): """ Computes the horizon error across the sequence. Returns: float: The computed horizon error. """ # calculate erros and store values in slope_error_list and midpoint_error_list for annotated_horizon, proposed_horizon in zip(self.ground_truth_det, self.predictions): if annotated_horizon is None or proposed_horizon is None: continue slope_error, midpoint_error = calculate_horizon_error( annotated_horizon, proposed_horizon) self.slope_error_list.append(slope_error) self.midpoint_error_list.append(midpoint_error) # calculate slope errors, midpoint errors and jumps result = calculate_horizon_error_across_sequence( self.slope_error_list, self.midpoint_error_list, self.slope_threshold, self.midpoint_threshold, self.vertical_fov_degrees, self.height) # calulcate detection rate detected_horizon_count = len( self.predictions) - self.predictions.count(None) detected_gt_count = len( self.ground_truth_det) - self.ground_truth_det.count(None) detection_rate = detected_horizon_count / detected_gt_count result['detection_rate'] = detection_rate result['predicted_samples'] = detected_horizon_count result['samples'] = detected_gt_count return result