mot-metrics / mot-metrics.py
kevinconka's picture
added patch for compatibility with payload object
ff19c2d
raw
history blame
7.68 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import evaluate
import datasets
import motmetrics as mm
import numpy as np
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}
}
"""
_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
algorithms by computing various metrics based on predicted and ground truth bounding
boxes. It serves as a crucial tool in assessing the performance of MOT systems,
aiding in the iterative improvement of tracking algorithms."""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
max_iou (`float`, *optional*):
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
Default is 0.5.
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class MotMetrics(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
)
}),
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self, payload, max_iou: float = 0.5, debug: bool = False):
"""Returns the scores"""
# TODO: Compute the different scores of the module
return calculate_from_payload(payload, max_iou, debug)
#return calculate(predictions, references, max_iou)
def calculate(predictions, references, max_iou: float = 0.5):
"""Returns the scores"""
try:
np_predictions = np.array(predictions)
except:
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
try:
np_references = np.array(references)
except:
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
if np_predictions.shape[1] != 7:
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
if np_references.shape[1] != 6:
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
if np_predictions[:, 0].min() <= 0:
raise ValueError("The frame number in the predictions should be a positive integer")
if np_references[:, 0].min() <= 0:
raise ValueError("The frame number in the references should be a positive integer")
num_frames = int(max(np_references[:, 0].max(), np_predictions[:, 0].max()))
acc = mm.MOTAccumulator(auto_id=True)
for i in range(1, num_frames+1):
preds = np_predictions[np_predictions[:, 0] == i, 1:6]
refs = np_references[np_references[:, 0] == i, 1:6]
C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou)
acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)
mh = mm.metrics.create()
summary = mh.compute(acc).to_dict()
for key in summary:
summary[key] = summary[key][0]
return summary
def calculate_from_payload(payload: dict, max_iou: float = 0.5, debug: bool = False):
if not isinstance(payload, dict):
try:
payload = payload.to_dict()
except Exception as e:
raise ValueError(
"The payload should be a dictionary or a compatible object"
) from e
gt_field_name = payload['gt_field_name']
models = payload['models']
sequence_list = payload['sequence_list']
if debug:
print("gt_field_name: ", gt_field_name)
print("models: ", models)
print("sequence_list: ", sequence_list)
output = {}
for sequence in sequence_list:
output[sequence] = {}
frames = payload['sequences'][sequence][gt_field_name]
formated_references = []
for frame_id, frame in enumerate(frames):
for detection in frame:
id = detection['index']
x, y, w, h = detection['bounding_box']
formated_references.append([frame_id+1, id, x, y, w, h])
for model in models:
frames = payload['sequences'][sequence][model]
formated_predictions = []
for frame_id, frame in enumerate(frames):
for detection in frame:
id = detection['index']
x, y, w, h = detection['bounding_box']
confidence = detection['confidence']
confidence = 1 #TODO: remove this line
formated_predictions.append([frame_id+1, id, x, y, w, h, confidence])
if debug:
print("sequence/model: ", sequence, model)
print("formated_predictions: ", formated_predictions)
print("formated_references: ", formated_references)
if len(formated_predictions) == 0:
output[sequence][model] = "Model had no predictions."
elif len(formated_references) == 0:
output[sequence][model] = "No ground truth."
else:
output[sequence][model] = calculate(formated_predictions, formated_references, max_iou=max_iou)
return output