VascoDVRodrigues commited on
Commit
f12b919
·
1 Parent(s): 18cf4f9

changed readme to match standard payload

Browse files
Files changed (2) hide show
  1. README.md +51 -24
  2. mot-metrics.py +5 -63
README.md CHANGED
@@ -1,22 +1,24 @@
1
  ---
2
- title: Mot Metrics
3
- emoji: 📚
4
  colorFrom: gray
5
  colorTo: green
6
- tags:
7
- - evaluate
8
- - metric
9
- description: "TODO: add a description here"
 
 
10
  sdk: gradio
11
  sdk_version: 3.19.1
12
- app_file: app.py
13
- pinned: false
 
 
14
  ---
15
 
16
  # How to Use
17
 
18
- The MOT metrics takes two numeric arrays as input corresponding to the predictions and references bounding boxes:
19
- ```python
20
  >>> import numpy as np
21
  >>> module = evaluate.load("SEA-AI/mot-metrics")
22
  >>> predicted =[[1,1,10,20,30,40,0.85],[2,1,15,25,35,45,0.78],[2,2,55,65,75,85,0.95]]
@@ -32,22 +34,46 @@ The MOT metrics takes two numeric arrays as input corresponding to the predictio
32
  'mota': 0.7, 'motp': 0.02981870229007634,
33
  'num_transfer': 0, 'num_ascend': 0,
34
  'num_migrate': 0}
35
- ```
36
 
37
- ## Input
38
- Each line of the **predictions** array is a list with the following format:
39
- ```
40
- [frame ID, object ID, x, y, width, height, confidence]
41
- ```
42
 
43
- Each line of the **references** array is a list with the following format:
44
- ```
45
- [frame ID, object ID, x, y, width, height]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  ```
47
 
48
- The `max_iou` parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association.
 
 
49
 
50
  ## Output
 
51
  The output is a dictionary containing the following metrics:
52
 
53
  | Name | Description |
@@ -68,16 +94,16 @@ The output is a dictionary containing the following metrics:
68
  | mota | Multiple object tracker accuracy. |
69
  | motp | Multiple object tracker precision. |
70
 
71
-
72
  ## Citations
73
- ```bibtex
 
74
  @InProceedings{huggingface:module,
75
  title = {A great new module},
76
  authors={huggingface, Inc.},
77
  year={2020}}
78
  ```
79
-
80
- ```bibtex
81
  @article{milan2016mot16,
82
  title={MOT16: A benchmark for multi-object tracking},
83
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
@@ -86,4 +112,5 @@ year={2016}}
86
  ```
87
 
88
  ## Further References
 
89
  - [Github Repository - py-motmetrics](https://github.com/cheind/py-motmetrics/tree/develop)
 
1
  ---
2
+ app_file: app.py
 
3
  colorFrom: gray
4
  colorTo: green
5
+ description: 'TODO: add a description here'
6
+ emoji: "\U0001F4DA"
7
+ pinned: false
8
+ runme:
9
+ id: 01HPS3ASFJXVQR88985QNSXVN1
10
+ version: v3
11
  sdk: gradio
12
  sdk_version: 3.19.1
13
+ tags:
14
+ - evaluate
15
+ - metric
16
+ title: Mot Metrics
17
  ---
18
 
19
  # How to Use
20
 
21
+ ```python {"id":"01HPS3ASFHPCECERTYN7Z4Z7MN"}
 
22
  >>> import numpy as np
23
  >>> module = evaluate.load("SEA-AI/mot-metrics")
24
  >>> predicted =[[1,1,10,20,30,40,0.85],[2,1,15,25,35,45,0.78],[2,2,55,65,75,85,0.95]]
 
34
  'mota': 0.7, 'motp': 0.02981870229007634,
35
  'num_transfer': 0, 'num_ascend': 0,
36
  'num_migrate': 0}
 
37
 
 
 
 
 
 
38
 
39
+ >>> import evaluate
40
+ >>> from seametrics.fo_to_payload.utils import fo_to_payload
41
+ >>> b = fo_to_payload(
42
+ >>> dataset="SENTRY_VIDEOS_DATASET_QA",
43
+ >>> gt_field="ground_truth_det",
44
+ >>> models=['volcanic-sweep-3_02_2023_N_LN1_ep288_TRACKER'],
45
+ >>> sequence_list=["Sentry_2022_11_PROACT_CELADON_7.5M_MOB_2022_11_25_12_12_39"],
46
+ >>> tracking_mode=True
47
+ >>> )
48
+ >>> module = evaluate.load("SEA-AI/mot-metrics")
49
+ >>> res = module._calculate(b, max_iou=0.99)
50
+ >>> print(res)
51
+ {'Sentry_2022_11_PROACT_CELADON_7.5M_MOB_2022_11_25_12_12_39': {'volcanic-sweep-3_02_2023_N_LN1_ep288_TRACKER': {'idf1': 0.9543031226199543,
52
+ 'idp': 0.9804381846635368,
53
+ 'idr': 0.9295252225519288,
54
+ 'recall': 0.9436201780415431,
55
+ 'precision': 0.9953051643192489,
56
+ 'num_unique_objects': 2,
57
+ 'mostly_tracked': 1,
58
+ 'partially_tracked': 0,
59
+ 'mostly_lost': 1,
60
+ 'num_false_positives': 6,
61
+ 'num_misses': 76,
62
+ 'num_switches': 1,
63
+ 'num_fragmentations': 4,
64
+ 'mota': 0.9384272997032641,
65
+ 'motp': 0.5235835810268012,
66
+ 'num_transfer': 0,
67
+ 'num_ascend': 1,
68
+ 'num_migrate': 0}}}
69
  ```
70
 
71
+ ## Metric Settings
72
+
73
+ The `max_iou` parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association. So, the higher the `max_iou` value, the more the predicted bounding boxes are considered for association.
74
 
75
  ## Output
76
+
77
  The output is a dictionary containing the following metrics:
78
 
79
  | Name | Description |
 
94
  | mota | Multiple object tracker accuracy. |
95
  | motp | Multiple object tracker precision. |
96
 
 
97
  ## Citations
98
+
99
+ ```bibtex {"id":"01HPS3ASFJXVQR88985GKHAQRE"}
100
  @InProceedings{huggingface:module,
101
  title = {A great new module},
102
  authors={huggingface, Inc.},
103
  year={2020}}
104
  ```
105
+
106
+ ```bibtex {"id":"01HPS3ASFJXVQR88985KRT478N"}
107
  @article{milan2016mot16,
108
  title={MOT16: A benchmark for multi-object tracking},
109
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
 
112
  ```
113
 
114
  ## Further References
115
+
116
  - [Github Repository - py-motmetrics](https://github.com/cheind/py-motmetrics/tree/develop)
mot-metrics.py CHANGED
@@ -49,64 +49,6 @@ Args:
49
  max_iou (`float`, *optional*):
50
  If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
51
  Default is 0.5.
52
- Returns:
53
- summary: pandas.DataFrame with the following columns:
54
- - idf1 (IDF1 Score): The F1 score for the identity assignment, computed as 2 * (IDP * IDR) / (IDP + IDR).
55
- - idp (ID Precision): Identity Precision, representing the ratio of correctly assigned identities to the total number of predicted identities.
56
- - idr (ID Recall): Identity Recall, representing the ratio of correctly assigned identities to the total number of ground truth identities.
57
- - recall: Recall, computed as the ratio of the number of correctly tracked objects to the total number of ground truth objects.
58
- - precision: Precision, computed as the ratio of the number of correctly tracked objects to the total number of predicted objects.
59
- - num_unique_objects: Total number of unique objects in the ground truth.
60
- - mostly_tracked: Number of objects that are mostly tracked throughout the sequence.
61
- - partially_tracked: Number of objects that are partially tracked but not mostly tracked.
62
- - mostly_lost: Number of objects that are mostly lost throughout the sequence.
63
- - num_false_positives: Number of false positive detections (predicted objects not present in the ground truth).
64
- - num_misses: Number of missed detections (ground truth objects not detected in the predictions).
65
- - num_switches: Number of identity switches.
66
- - num_fragmentations: Number of fragmented objects (objects that are broken into multiple tracks).
67
- - mota (MOTA - Multiple Object Tracking Accuracy): Overall tracking accuracy, computed as 1 - ((num_false_positives + num_misses + num_switches) / num_unique_objects).
68
- - motp (MOTP - Multiple Object Tracking Precision): Average precision of the object localization, computed as the mean of the localization errors of correctly detected objects.
69
- - num_transfer: Number of track transfers.
70
- - num_ascend: Number of ascended track IDs.
71
- - num_migrate: Number of track ID migrations.
72
-
73
- Examples:
74
- >>> import numpy as np
75
- >>> module = evaluate.load("bascobasculino/mot-metrics")
76
-
77
- >>> predicted =[
78
- [1,1,10,20,30,40,0.85],
79
- [1,2,50,60,70,80,0.92],
80
- [1,3,80,90,100,110,0.75],
81
- [2,1,15,25,35,45,0.78],
82
- [2,2,55,65,75,85,0.95],
83
- [3,1,20,30,40,50,0.88],
84
- [3,2,60,70,80,90,0.82],
85
- [4,1,25,35,45,55,0.91],
86
- [4,2,65,75,85,95,0.89]
87
- ]
88
-
89
- >>> ground_truth = [
90
- [1, 1, 10, 20, 30, 40],
91
- [1, 2, 50, 60, 70, 80],
92
- [1, 3, 85, 95, 105, 115],
93
- [2, 1, 15, 25, 35, 45],
94
- [2, 2, 55, 65, 75, 85],
95
- [3, 1, 20, 30, 40, 50],
96
- [3, 2, 60, 70, 80, 90],
97
- [4, 1, 25, 35, 45, 55],
98
- [5, 1, 30, 40, 50, 60],
99
- [5, 2, 70, 80, 90, 100]
100
- ]
101
- >>> predicted = [np.array(a) for a in predicted]
102
- >>> ground_truth = [np.array(a) for a in ground_truth]
103
-
104
- >>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
105
- >>> print(results)
106
- {'idf1': 0.8421052631578947, 'idp': 0.8888888888888888, 'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
107
- 'num_unique_objects': 3,'mostly_tracked': 2, 'partially_tracked': 1, 'mostly_lost': 0, 'num_false_positives': 1,
108
- 'num_misses': 2, 'num_switches': 0, 'num_fragmentations': 0, 'mota': 0.7, 'motp': 0.02981870229007634,
109
- 'num_transfer': 0, 'num_ascend': 0, 'num_migrate': 0}
110
  """
111
 
112
 
@@ -202,12 +144,12 @@ def calculate_from_payload(payload: dict, max_iou: float = 0.5, debug: bool = Fa
202
  for sequence in sequence_list:
203
  output[sequence] = {}
204
  frames = payload['sequences'][sequence][gt_field_name]
205
- formatted_references = []
206
  for frame_id, frame in enumerate(frames):
207
  for detection in frame:
208
  id = detection['index']
209
  x, y, w, h = detection['bounding_box']
210
- formatted_references.append([frame_id+1, id, x, y, w, h])
211
 
212
  for model in models:
213
  frames = payload['sequences'][sequence][model]
@@ -223,13 +165,13 @@ def calculate_from_payload(payload: dict, max_iou: float = 0.5, debug: bool = Fa
223
  if debug:
224
  print("sequence/model: ", sequence, model)
225
  print("formated_predictions: ", formated_predictions)
226
- print("formated_references: ", formatted_references)
227
  if len(formated_predictions) == 0:
228
  output[sequence][model] = "Model had no predictions."
229
- elif len(formatted_references) == 0:
230
  output[sequence][model] = "No ground truth."
231
  else:
232
- output[sequence][model] = calculate(formated_predictions, formatted_references, max_iou=max_iou)
233
  return output
234
 
235
 
 
49
  max_iou (`float`, *optional*):
50
  If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
51
  Default is 0.5.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  """
53
 
54
 
 
144
  for sequence in sequence_list:
145
  output[sequence] = {}
146
  frames = payload['sequences'][sequence][gt_field_name]
147
+ formated_references = []
148
  for frame_id, frame in enumerate(frames):
149
  for detection in frame:
150
  id = detection['index']
151
  x, y, w, h = detection['bounding_box']
152
+ formated_references.append([frame_id+1, id, x, y, w, h])
153
 
154
  for model in models:
155
  frames = payload['sequences'][sequence][model]
 
165
  if debug:
166
  print("sequence/model: ", sequence, model)
167
  print("formated_predictions: ", formated_predictions)
168
+ print("formated_references: ", formated_references)
169
  if len(formated_predictions) == 0:
170
  output[sequence][model] = "Model had no predictions."
171
+ elif len(formated_references) == 0:
172
  output[sequence][model] = "No ground truth."
173
  else:
174
+ output[sequence][model] = calculate(formated_predictions, formated_references, max_iou=max_iou)
175
  return output
176
 
177