--- title: panoptic-quality tags: - evaluate - metric description: PanopticQuality score sdk: gradio sdk_version: 4.44.1 app_file: app.py pinned: false emoji: 🖼️ --- # SEA-AI/PanopticQuality This hugging face metric uses `seametrics.segmentation.PanopticQuality` under the hood to compute a panoptic quality score. It is a wrapper class for the torchmetrics class [`torchmetrics.detection.PanopticQuality`](https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html). ## Getting Started To get started with PanopticQuality, make sure you have the necessary dependencies installed. This metric relies on the `evaluate`, `seametrics` and `seametrics[segmentation]`libraries for metric calculation and integration with FiftyOne datasets. ### Basic Usage ```python >>> import evaluate >>> from seametrics.payload.processor import PayloadProcessor >>> MODEL_FIELD = ["maskformer-27k-100ep"] >>> payload = PayloadProcessor("SAILING_PANOPTIC_DATASET_QA", >>> gt_field="ground_truth_det", >>> models=MODEL_FIELD, >>> sequence_list=["Trip_55_Seq_2", "Trip_197_Seq_1", "Trip_197_Seq_68"], >>> excluded_classes=[""]).payload >>> module = evaluate.load("SEA-AI/PanopticQuality", area_rng=[(0, 100),(100, 1e9)]) >>> module.add_payload(payload, model_name=MODEL_FIELD[0]) >>> module.compute() 100%|██████████| 3/3 [00:03<00:00, 1.30s/it] Added data ... Start computing ... Finished! {'scores': {'MOTORBOAT': array([[0. , 0.25889117], [0. , 0.79029936], [0. , 0.3275862 ]]), 'FAR_AWAY_OBJECT': array([[0., 0.], [0., 0.], [0., 0.]]), 'SAILING_BOAT_WITH_CLOSED_SAILS': array([[0. , 0.35410052], [0. , 0.75246359], [0. , 0.47058824]]), 'SHIP': array([[0. , 0.47743301], [0. , 0.90181785], [0. , 0.52941179]]), 'WATERCRAFT': array([[0., 0.], [0., 0.], [0., 0.]]), 'SPHERICAL_BUOY': array([[0., 0.], [0., 0.], [0., 0.]]), 'FLOTSAM': array([[0., 0.], [0., 0.], [0., 0.]]), 'SAILING_BOAT_WITH_OPEN_SAILS': array([[0., 0.], [0., 0.], [0., 0.]]), 'CONTAINER': array([[0., 0.], [0., 0.], [0., 0.]]), 'PILLAR_BUOY': array([[0., 0.], [0., 0.], [0., 0.]]), 'AERIAL_ANIMAL': array([[0., 0.], [0., 0.], [0., 0.]]), 'HUMAN_IN_WATER': array([[0., 0.], [0., 0.], [0., 0.]]), 'WOODEN_LOG': array([[0., 0.], [0., 0.], [0., 0.]]), 'MARITIME_ANIMAL': array([[0., 0.], [0., 0.], [0., 0.]]), 'WATER': array([[0. , 0.96737861], [0. , 0.96737861], [0. , 1. ]]), 'SKY': array([[0. , 0.93018024], [0. , 0.93018024], [0. , 1. ]]), 'LAND': array([[0. , 0.53552331], [0. , 0.84447907], [0. , 0.63414633]]), 'CONSTRUCTION': array([[0., 0.], [0., 0.], [0., 0.]]), 'OWN_BOAT': array([[0., 0.], [0., 0.], [0., 0.]]), 'ALL': array([[0. , 0.18544773], [0. , 0.27297993], [0. , 0.20851224]])}, 'numbers': {'MOTORBOAT': array([[ 0. , 19. ], [ 6. , 18. ], [10. , 60. ], [ 0. , 15.01568782]]), 'FAR_AWAY_OBJECT': array([[0., 0.], [6., 6.], [9., 0.], [0., 0.]]), 'SAILING_BOAT_WITH_CLOSED_SAILS': array([[0. , 4. ], [0. , 6. ], [0. , 3. ], [0. , 3.00985438]]), 'SHIP': array([[ 0. , 9. ], [ 0. , 2. ], [ 1. , 14. ], [ 0. , 8.11636066]]), 'WATERCRAFT': array([[ 0., 0.], [ 1., 9.], [11., 1.], [ 0., 0.]]), 'SPHERICAL_BUOY': array([[ 0., 0.], [ 1., 3.], [36., 0.], [ 0., 0.]]), 'FLOTSAM': array([[0., 0.], [0., 0.], [7., 4.], [0., 0.]]), 'SAILING_BOAT_WITH_OPEN_SAILS': array([[0., 0.], [0., 5.], [0., 0.], [0., 0.]]), 'CONTAINER': array([[0., 0.], [0., 0.], [0., 0.], [0., 0.]]), 'PILLAR_BUOY': array([[0., 0.], [0., 0.], [5., 3.], [0., 0.]]), 'AERIAL_ANIMAL': array([[0., 0.], [0., 0.], [0., 0.], [0., 0.]]), 'HUMAN_IN_WATER': array([[0., 0.], [0., 0.], [0., 0.], [0., 0.]]), 'WOODEN_LOG': array([[0., 0.], [0., 0.], [0., 0.], [0., 0.]]), 'MARITIME_ANIMAL': array([[0., 0.], [0., 0.], [0., 0.], [0., 0.]]), 'WATER': array([[ 0. , 24. ], [ 0. , 0. ], [ 0. , 0. ], [ 0. , 23.21708667]]), 'SKY': array([[ 0. , 24. ], [ 0. , 0. ], [ 0. , 0. ], [ 0. , 22.32432568]]), 'LAND': array([[ 0. , 13. ], [ 0. , 7. ], [ 0. , 8. ], [ 0. , 10.97822797]]), 'CONSTRUCTION': array([[0., 0.], [0., 0.], [0., 0.], [0., 0.]]), 'OWN_BOAT': array([[ 0., 0.], [ 0., 0.], [ 0., 10.], [ 0., 0.]]), 'ALL': array([[ 0. , 93. ], [ 14. , 56. ], [ 79. , 103. ], [ 0. , 82.66154319]])}} ``` ## Metric Settings The metric takes four optional input parameters: __label2id__, __stuff__, __per_class__ and __split_sq_rq__. * `label2id: Dict[str, int]`: this dictionary is used to map string labels to an integer representation. if not provided a default setting will be used: `{'WATER': 0, 'SKY': 1, 'LAND': 2, 'MOTORBOAT': 3, 'FAR_AWAY_OBJECT': 4, 'SAILING_BOAT_WITH_CLOSED_SAILS': 5, 'SHIP': 6, 'WATERCRAFT': 7, 'SPHERICAL_BUOY': 8, 'CONSTRUCTION': 9, 'FLOTSAM': 10, 'SAILING_BOAT_WITH_OPEN_SAILS': 11, 'CONTAINER': 12, 'PILLAR_BUOY': 13, 'AERIAL_ANIMAL': 14, 'HUMAN_IN_WATER': 15, 'OWN_BOAT': 16, 'WOODEN_LOG': 17, 'MARITIME_ANIMAL': 18} ` * `stuff: List[str]`: this list holds all string labels that belong to stuff. if not provided a default setting will be used: ` ["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"]` * `per_class: bool = True`: By default, the results are split up per class. Setting this to False will aggregate the results (average the _scores_, sum up the _numbers_; see below for explanation of _scores_ and _numbers_) * `split_sq_rq: bool = True`: By default, the PQ-score is returned in three parts: the PQ score itself, and split into the segmentation quality (SQ) and recognition quality (RQ) part. Setting this to False will return the PQ score only (PQ=RQ*SQ). * `area_rng: List[Tuple[float]]`: The list holds all the area ranges for which results are calculated. Each range is represented by a Tuple, where the first element is the lower limit and the second is the upper limit of the area range. Each value represents total number of pixels of a mask. The parameter defaults to [(0, 1e8)]. ## Output Values A dictionary containing the following keys: * __scores__: This is a dictionary, that contains a key for each label, if `per_class == True`. Otherwise it only contains the key _all_. For each key, it contains an array that holds the scores in the the rows in following order: PQ, SQ and RQ. If `split_sq_rq == False`, the rows consist of PQ only. The number of columns corresponds to the given area ranges. That means, the results in each column are for a certain size of objects. * __numbers__: This is a dictionary, that contains a key for each label, if `per_class == True`. Otherwise it only contains the key _all_. For each key, it contains an array that consists of four elements in the rows: TP, FP, FN and IOU: * __TP__: number of true positive predictions * __FP__: number of false positive predictions * __FN__: number of false negative predictions * __IOU__: sum of IOU of all TP predictions with ground truth With all these values, it is possible to calculate the final scores. As for the scores, the number of columns corresponds to the given area ranges. That means, the results in each column are for a certain size of objects. ## Further References - **seametrics Library**: Explore the [seametrics GitHub repository](https://github.com/SEA-AI/seametrics/tree/main) for more details on the underlying library. - **Torchmetrics**: https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html - **Understanding Metrics**: The Panoptic Segmentation task, as well as Panoptic Quality as the evaluation metric, were introduced [in this paper](https://arxiv.org/pdf/1801.00868.pdf). ## Contribution Your contributions are welcome! If you'd like to improve SEA-AI/PanopticQuality or add new features, please feel free to fork the repository, make your changes, and submit a pull request.