ref-metrics / ref-metrics.py
hichem-abdellali's picture
Update ref-metrics.py
7c17618 verified
raw
history blame
6.38 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import datetime
import os
import datasets
import evaluate
from seametrics.user_friendly.utils import calculate_from_payload
import wandb
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}
}
"""
_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
algorithms by computing various metrics based on predicted and ground truth bounding
boxes. It serves as a crucial tool in assessing the performance of MOT systems,
aiding in the iterative improvement of tracking algorithms."""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
max_iou (`float`, *optional*):
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
Default is 0.5.
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class UserFriendlyMetrics(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
}
),
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"],
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def compute_from_payload(
self,
payload,
max_iou: float = 0.5,
filters={},
recognition_thresholds=[0.3, 0.5, 0.8],
area_ranges_tuples=None, # Optional parameter
debug: bool = False,
):
"""
Compute the metric from the payload.
Args:
payload (Payload): The payload to compute the metric from.
**kwargs: Additional keyword arguments.
Returns:
dict: The computed metric results with the following format:
{
"model_name": {
"overall": {
"all": {"tp": ..., "fp": ..., "fn": ..., "f1": ...},
... # more area ranges
},
"per_sequence": {
"sequence_name": {
"all": {...},
... # more area ranges
},
... # more sequences
}
},
... # more models
}
Note:
- If the metric does not support area ranges, the metric should store the results under the `all` key.
"""
return self.dummy_values(area_ranges_tuples)
def dummy_values(self, area_ranges_tuples=None):
"""Dummy randome values in the expected format that all new metrics need to return"""
print(area_ranges_tuples)
# Use default ranges if none are provided
if area_ranges_tuples is None:
area_names = ["all", "small", "medium", "large"]
else:
area_names = list(area_ranges_tuples.keys())
# Generate random dummy values
def generate_random_values():
return {
"tp": random.randint(0, 100), # Random integer between 0 and 100
"fp": random.randint(0, 50), # Random integer between 0 and 50
"fn": random.randint(0, 50), # Random integer between 0 and 50
"precision": round(
random.uniform(0.5, 1.0), 2
), # Random float between 0.5 and 1.0
"recall": round(
random.uniform(0.5, 1.0), 2
), # Random float between 0.5 and 1.0
"f1": round(
random.uniform(0.5, 1.0), 2
), # Random float between 0.5 and 1.0
}
# Initialize output structure
dummy_output = {"model_1": {"overall": {}, "per_sequence": {"sequence_1": {}}}}
# Populate only the ranges specified in area_ranges_tuples with random values
for area_name in area_names:
dummy_output["model_1"]["overall"][area_name] = generate_random_values()
dummy_output["model_1"]["per_sequence"]["sequence_1"][
area_name
] = generate_random_values()
return dummy_output