Spaces:
Sleeping
Sleeping
update readme
Browse files
README.md
CHANGED
@@ -3,7 +3,7 @@ app_file: app.py
|
|
3 |
colorFrom: yellow
|
4 |
colorTo: green
|
5 |
description: 'TODO: add a description here'
|
6 |
-
emoji:
|
7 |
pinned: false
|
8 |
runme:
|
9 |
id: 01HPS3ASFJXVQR88985QNSXVN1
|
@@ -13,7 +13,7 @@ sdk_version: 4.36.0
|
|
13 |
tags:
|
14 |
- evaluate
|
15 |
- metric
|
16 |
-
title:
|
17 |
---
|
18 |
|
19 |
# How to Use
|
@@ -22,135 +22,163 @@ title: user-friendly-metrics
|
|
22 |
import evaluate
|
23 |
from seametrics.payload.processor import PayloadProcessor
|
24 |
|
25 |
-
payload =
|
26 |
-
|
27 |
-
gt_field="ground_truth_det_fused_id",
|
28 |
-
models=["ahoy_IR_b2_engine_3_7_0_757_g8765b007_oversea"],
|
29 |
-
sequence_list=["Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_14_41_51"],
|
30 |
-
# tags=["GT_ID_FUSION"],
|
31 |
-
tracking_mode=True
|
32 |
-
).payload
|
33 |
-
|
34 |
-
module = evaluate.load("SEA-AI/user-friendly-metrics")
|
35 |
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])
|
36 |
print(res)
|
37 |
```
|
38 |
|
|
|
|
|
|
|
39 |
```json
|
40 |
-
{
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
"
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
}
|
58 |
-
}
|
59 |
-
|
60 |
-
|
61 |
-
"Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_12_51_49": {
|
62 |
-
"ahoy_IR_b2_engine_3_6_0_49_gd81d3b63_oversea": {
|
63 |
"all": {
|
64 |
-
"
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"
|
68 |
-
"
|
69 |
-
"
|
70 |
-
|
71 |
-
|
72 |
-
"
|
73 |
-
"
|
74 |
-
"
|
75 |
-
"
|
76 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
}
|
78 |
}
|
79 |
}
|
80 |
}
|
81 |
-
}
|
82 |
```
|
83 |
|
84 |
-
## Metric Settings
|
85 |
-
|
86 |
-
The `max_iou` parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association. So, the higher the `max_iou` value, the more the predicted bounding boxes are considered for association.
|
87 |
-
|
88 |
-
## Output
|
89 |
-
|
90 |
-
The output is a dictionary containing the following metrics:
|
91 |
-
|
92 |
-
| Name | Description |
|
93 |
-
| :------------------- | :--------------------------------------------------------------------------------- |
|
94 |
-
| recall | Number of detections over number of objects. |
|
95 |
-
| precision | Number of detected objects over sum of detected and false positives. |
|
96 |
-
| f1 | F1 score |
|
97 |
-
| num_gt_ids | Number of unique objects on the ground truth |
|
98 |
-
| fn | Number of false negatives |
|
99 |
-
| fp | Number of of false postives |
|
100 |
-
| tp | number of true positives |
|
101 |
-
| recognized_th | Total number of unique objects on the ground truth that were seen more then th% of the times |
|
102 |
-
| recognition_th | Total number of unique objects on the ground truth that were seen more then th% of the times over the number of unique objects on the ground truth|
|
103 |
-
|
104 |
-
## How it Works
|
105 |
-
|
106 |
-
We levereage one of the internal variables of motmetrics ```MOTAccumulator``` class, ```events```, which keeps track of the detections hits and misses. These values are then processed via the ```track_ratios``` function which counts the ratio of assigned to total appearance count per unique object id. We then define the ```recognition``` function that counts how many objects have been seen more times then the desired threshold.
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
## W&B logging
|
112 |
-
When you use **module.wandb()**, it is possible to log the User Frindly metrics values in Weights and Bias (W&B). The W&B key is stored as a Secret in this repository.
|
113 |
-
|
114 |
-
### Params
|
115 |
-
- **wandb_project** - Name of the W&B project (Default: `'user_freindly_metrics'`)
|
116 |
-
- **log_plots** (bool, optional): Generates categorized bar charts for global metrics. Defaults to True
|
117 |
-
- **debug** (bool, optional): Logs everything to the console and w&b Logs page. Defaults to False
|
118 |
-
|
119 |
-
```python
|
120 |
-
import evaluate
|
121 |
-
import logging
|
122 |
-
from seametrics.payload.processor import PayloadProcessor
|
123 |
-
|
124 |
-
logging.basicConfig(level=logging.WARNING)
|
125 |
-
|
126 |
-
# Configure your dataset and model details
|
127 |
-
payload = PayloadProcessor(
|
128 |
-
dataset_name="SENTRY_VIDEOS_DATASET_QA",
|
129 |
-
gt_field="ground_truth_det_fused_id",
|
130 |
-
models=["ahoy_IR_b2_engine_3_7_0_757_g8765b007_oversea"],
|
131 |
-
sequence_list=["Sentry_2023_02_08_PROACT_CELADON_@6m_MOB_2023_02_08_14_41_51"],
|
132 |
-
tracking_mode=True
|
133 |
-
).payload
|
134 |
-
|
135 |
-
|
136 |
-
# Evaluate using SEA-AI/user-friendly-metrics
|
137 |
-
module = evaluate.load("SEA-AI/user-friendly-metrics")
|
138 |
-
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])
|
139 |
-
|
140 |
-
module.wandb(res,log_plots=True, debug=True)
|
141 |
-
```
|
142 |
-
|
143 |
-
- If `log_plots` is `True`, the W&B logging function generates four bar plots:
|
144 |
-
- **User_Friendly Metrics (mostly_tracked_score_%)** mainly for non dev users
|
145 |
-
- **User_Friendly Metrics (mostly_tracked_count_%)** for dev
|
146 |
-
- **Evaluation Metrics** (F1, precision, recall)
|
147 |
-
- **Prediction Summary** (false negatives, false positives, true positives)
|
148 |
-
|
149 |
-
- If `debug` is `True`, the function logs the global metrics plus the per-sequence evaluation metrics in descending order of F1 score under the **Logs** section of the run page.
|
150 |
-
|
151 |
-
- If both `log_plots` and `debug` are `False`, the function logs the metrics to the **Summary**.
|
152 |
-
|
153 |
-

|
154 |
|
155 |
|
156 |
## Citations
|
|
|
3 |
colorFrom: yellow
|
4 |
colorTo: green
|
5 |
description: 'TODO: add a description here'
|
6 |
+
emoji: 🐢
|
7 |
pinned: false
|
8 |
runme:
|
9 |
id: 01HPS3ASFJXVQR88985QNSXVN1
|
|
|
13 |
tags:
|
14 |
- evaluate
|
15 |
- metric
|
16 |
+
title: ref-metric
|
17 |
---
|
18 |
|
19 |
# How to Use
|
|
|
22 |
import evaluate
|
23 |
from seametrics.payload.processor import PayloadProcessor
|
24 |
|
25 |
+
payload = {}
|
26 |
+
module = evaluate.load("SEA-AI/ref-metric")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
res = module._compute(payload, max_iou=0.5, recognition_thresholds=[0.3, 0.5, 0.8])
|
28 |
print(res)
|
29 |
```
|
30 |
|
31 |
+
## Output
|
32 |
+
|
33 |
+
|
34 |
```json
|
35 |
+
"model_1": {
|
36 |
+
"overall": {
|
37 |
+
"all": {
|
38 |
+
"tp": 50,
|
39 |
+
"fp": 20,
|
40 |
+
"fn": 10,
|
41 |
+
"precision": 0.71,
|
42 |
+
"recall": 0.83,
|
43 |
+
"f1": 0.76
|
44 |
+
},
|
45 |
+
"small": {
|
46 |
+
"tp": 15,
|
47 |
+
"fp": 5,
|
48 |
+
"fn": 2,
|
49 |
+
"precision": 0.75,
|
50 |
+
"recall": 0.88,
|
51 |
+
"f1": 0.81
|
52 |
+
},
|
53 |
+
"medium": {
|
54 |
+
"tp": 25,
|
55 |
+
"fp": 10,
|
56 |
+
"fn": 5,
|
57 |
+
"precision": 0.71,
|
58 |
+
"recall": 0.83,
|
59 |
+
"f1": 0.76
|
60 |
+
},
|
61 |
+
"large": {
|
62 |
+
"tp": 10,
|
63 |
+
"fp": 5,
|
64 |
+
"fn": 3,
|
65 |
+
"precision": 0.67,
|
66 |
+
"recall": 0.77,
|
67 |
+
"f1": 0.71
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"per_sequence": {
|
71 |
+
"sequence_1": {
|
72 |
+
"all": {
|
73 |
+
"tp": 30,
|
74 |
+
"fp": 15,
|
75 |
+
"fn": 7,
|
76 |
+
"precision": 0.67,
|
77 |
+
"recall": 0.81,
|
78 |
+
"f1": 0.73
|
79 |
+
},
|
80 |
+
"small": {
|
81 |
+
"tp": 10,
|
82 |
+
"fp": 3,
|
83 |
+
"fn": 1,
|
84 |
+
"precision": 0.77,
|
85 |
+
"recall": 0.91,
|
86 |
+
"f1": 0.83
|
87 |
+
},
|
88 |
+
"medium": {
|
89 |
+
"tp": 15,
|
90 |
+
"fp": 7,
|
91 |
+
"fn": 2,
|
92 |
+
"precision": 0.68,
|
93 |
+
"recall": 0.88,
|
94 |
+
"f1": 0.77
|
95 |
+
},
|
96 |
+
"large": {
|
97 |
+
"tp": 5,
|
98 |
+
"fp": 2,
|
99 |
+
"fn": 1,
|
100 |
+
"precision": 0.71,
|
101 |
+
"recall": 0.83,
|
102 |
+
"f1": 0.76
|
103 |
+
}
|
104 |
+
}
|
105 |
}
|
106 |
+
},
|
107 |
+
"model_2": {
|
108 |
+
"overall": {
|
|
|
|
|
109 |
"all": {
|
110 |
+
"tp": 60,
|
111 |
+
"fp": 25,
|
112 |
+
"fn": 15,
|
113 |
+
"precision": 0.71,
|
114 |
+
"recall": 0.80,
|
115 |
+
"f1": 0.75
|
116 |
+
},
|
117 |
+
"small": {
|
118 |
+
"tp": 20,
|
119 |
+
"fp": 6,
|
120 |
+
"fn": 3,
|
121 |
+
"precision": 0.77,
|
122 |
+
"recall": 0.87,
|
123 |
+
"f1": 0.82
|
124 |
+
},
|
125 |
+
"medium": {
|
126 |
+
"tp": 30,
|
127 |
+
"fp": 12,
|
128 |
+
"fn": 5,
|
129 |
+
"precision": 0.71,
|
130 |
+
"recall": 0.86,
|
131 |
+
"f1": 0.78
|
132 |
+
},
|
133 |
+
"large": {
|
134 |
+
"tp": 10,
|
135 |
+
"fp": 7,
|
136 |
+
"fn": 5,
|
137 |
+
"precision": 0.59,
|
138 |
+
"recall": 0.67,
|
139 |
+
"f1": 0.63
|
140 |
+
}
|
141 |
+
},
|
142 |
+
"per_sequence": {
|
143 |
+
"sequence_1": {
|
144 |
+
"all": {
|
145 |
+
"tp": 40,
|
146 |
+
"fp": 18,
|
147 |
+
"fn": 8,
|
148 |
+
"precision": 0.69,
|
149 |
+
"recall": 0.83,
|
150 |
+
"f1": 0.75
|
151 |
+
},
|
152 |
+
"small": {
|
153 |
+
"tp": 12,
|
154 |
+
"fp": 4,
|
155 |
+
"fn": 2,
|
156 |
+
"precision": 0.75,
|
157 |
+
"recall": 0.86,
|
158 |
+
"f1": 0.80
|
159 |
+
},
|
160 |
+
"medium": {
|
161 |
+
"tp": 20,
|
162 |
+
"fp": 8,
|
163 |
+
"fn": 3,
|
164 |
+
"precision": 0.71,
|
165 |
+
"recall": 0.87,
|
166 |
+
"f1": 0.78
|
167 |
+
},
|
168 |
+
"large": {
|
169 |
+
"tp": 8,
|
170 |
+
"fp": 6,
|
171 |
+
"fn": 3,
|
172 |
+
"precision": 0.57,
|
173 |
+
"recall": 0.73,
|
174 |
+
"f1": 0.64
|
175 |
+
}
|
176 |
}
|
177 |
}
|
178 |
}
|
179 |
}
|
|
|
180 |
```
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
|
184 |
## Citations
|