hichem-abdellali commited on
Commit
deff25b
·
verified ·
1 Parent(s): 64747fb

Update ref-metrics.py

Browse files
Files changed (1) hide show
  1. ref-metrics.py +41 -43
ref-metrics.py CHANGED
@@ -90,62 +90,60 @@ class UserFriendlyMetrics(evaluate.Metric):
90
  """Optional: download external resources useful to compute the scores"""
91
  # TODO: Download external resources if needed
92
  pass
93
-
94
 
95
  def compute_from_payload(
96
- self,
97
- payload,
98
- max_iou: float = 0.5,
99
- filters={},
100
- recognition_thresholds=[0.3, 0.5, 0.8],
101
- area_ranges_tuples=None, # Optional parameter
102
- debug: bool = False,
103
- ):
104
- """
105
- Call the required functions to compute the metrics and return it.
106
-
107
- Returns:
108
- dict: A dictionary containing the computed metrics based on the provided area in the area_ranges_tuples.
109
- """
110
- return self.dummy_values(area_ranges_tuples)
111
-
 
112
  def dummy_values(self, area_ranges_tuples=None):
113
  """Dummy randome values in the expected format that all new metrics need to return"""
114
 
115
  # Use default ranges if none are provided
116
  if area_ranges_tuples is None:
117
- area_ranges_tuples = [
118
- ("all", [0, 1e5**2]),
119
- ("small", [0**2, 6**2]),
120
- ("medium", [6**2, 12**2]),
121
- ("large", [12**2, 1e5**2]),
122
- ]
123
-
124
  # Generate random dummy values
125
  def generate_random_values():
126
  return {
127
  "tp": random.randint(0, 100), # Random integer between 0 and 100
128
- "fp": random.randint(0, 50), # Random integer between 0 and 50
129
- "fn": random.randint(0, 50), # Random integer between 0 and 50
130
- "precision": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0
131
- "recall": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0
132
- "f1": round(random.uniform(0.5, 1.0), 2) # Random float between 0.5 and 1.0
 
 
 
 
 
 
133
  }
134
-
135
  # Initialize output structure
136
- dummy_output = {
137
- "model_1": {
138
- "overall": {},
139
- "per_sequence": {
140
- "sequence_1": {}
141
- }
142
- }
143
- }
144
-
145
  # Populate only the ranges specified in area_ranges_tuples with random values
146
- for range_name, _ in area_ranges_tuples:
147
- dummy_output["model_1"]["overall"][range_name] = generate_random_values()
148
- dummy_output["model_1"]["per_sequence"]["sequence_1"][range_name] = generate_random_values()
149
-
 
 
150
  return dummy_output
151
 
 
90
  """Optional: download external resources useful to compute the scores"""
91
  # TODO: Download external resources if needed
92
  pass
 
93
 
94
  def compute_from_payload(
95
+ self,
96
+ payload,
97
+ max_iou: float = 0.5,
98
+ filters={},
99
+ recognition_thresholds=[0.3, 0.5, 0.8],
100
+ area_ranges_tuples=None, # Optional parameter
101
+ debug: bool = False,
102
+ ):
103
+ """
104
+ Call the required functions to compute the metrics and return it.
105
+
106
+ Returns:
107
+ dict: A dictionary containing the computed metrics based on the provided area in the area_ranges_tuples,
108
+ if a range area is provided it will be displayed in the output.
109
+ """
110
+ return self.dummy_values(area_ranges_tuples)
111
+
112
  def dummy_values(self, area_ranges_tuples=None):
113
  """Dummy randome values in the expected format that all new metrics need to return"""
114
 
115
  # Use default ranges if none are provided
116
  if area_ranges_tuples is None:
117
+ area_names = ["all", "small", "medium", "large"]
118
+ else:
119
+ area_names = list(area_ranges_tuples.keys())
120
+
 
 
 
121
  # Generate random dummy values
122
  def generate_random_values():
123
  return {
124
  "tp": random.randint(0, 100), # Random integer between 0 and 100
125
+ "fp": random.randint(0, 50), # Random integer between 0 and 50
126
+ "fn": random.randint(0, 50), # Random integer between 0 and 50
127
+ "precision": round(
128
+ random.uniform(0.5, 1.0), 2
129
+ ), # Random float between 0.5 and 1.0
130
+ "recall": round(
131
+ random.uniform(0.5, 1.0), 2
132
+ ), # Random float between 0.5 and 1.0
133
+ "f1": round(
134
+ random.uniform(0.5, 1.0), 2
135
+ ), # Random float between 0.5 and 1.0
136
  }
137
+
138
  # Initialize output structure
139
+ dummy_output = {"model_1": {"overall": {}, "per_sequence": {"sequence_1": {}}}}
140
+
 
 
 
 
 
 
 
141
  # Populate only the ranges specified in area_ranges_tuples with random values
142
+ for area_name in area_names:
143
+ dummy_output["model_1"]["overall"][area_name] = generate_random_values()
144
+ dummy_output["model_1"]["per_sequence"]["sequence_1"][
145
+ area_name
146
+ ] = generate_random_values()
147
+
148
  return dummy_output
149