Spaces:
Sleeping
Sleeping
update the dummy example
Browse files- ref-metrics.py +53 -83
ref-metrics.py
CHANGED
@@ -12,6 +12,8 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
|
|
|
|
15 |
import datetime
|
16 |
import os
|
17 |
|
@@ -89,91 +91,59 @@ class UserFriendlyMetrics(evaluate.Metric):
|
|
89 |
# TODO: Download external resources if needed
|
90 |
pass
|
91 |
|
|
|
92 |
def compute_from_payload(
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
def dummy_values(self):
|
106 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
"model_1": {
|
108 |
-
"overall": {
|
109 |
-
"all": {
|
110 |
-
"tp": 50,
|
111 |
-
"fp": 20,
|
112 |
-
"fn": 10,
|
113 |
-
"precision": 0.71,
|
114 |
-
"recall": 0.83,
|
115 |
-
"f1": 0.76
|
116 |
-
},
|
117 |
-
"small": {
|
118 |
-
"tp": 15,
|
119 |
-
"fp": 5,
|
120 |
-
"fn": 2,
|
121 |
-
"precision": 0.75,
|
122 |
-
"recall": 0.88,
|
123 |
-
"f1": 0.81
|
124 |
-
},
|
125 |
-
"medium": {
|
126 |
-
"tp": 25,
|
127 |
-
"fp": 10,
|
128 |
-
"fn": 5,
|
129 |
-
"precision": 0.71,
|
130 |
-
"recall": 0.83,
|
131 |
-
"f1": 0.76
|
132 |
-
},
|
133 |
-
"large": {
|
134 |
-
"tp": 10,
|
135 |
-
"fp": 5,
|
136 |
-
"fn": 3,
|
137 |
-
"precision": 0.67,
|
138 |
-
"recall": 0.77,
|
139 |
-
"f1": 0.71
|
140 |
-
}
|
141 |
-
},
|
142 |
"per_sequence": {
|
143 |
-
"sequence_1": {
|
144 |
-
"all": {
|
145 |
-
"tp": 30,
|
146 |
-
"fp": 15,
|
147 |
-
"fn": 7,
|
148 |
-
"precision": 0.67,
|
149 |
-
"recall": 0.81,
|
150 |
-
"f1": 0.73
|
151 |
-
},
|
152 |
-
"small": {
|
153 |
-
"tp": 10,
|
154 |
-
"fp": 3,
|
155 |
-
"fn": 1,
|
156 |
-
"precision": 0.77,
|
157 |
-
"recall": 0.91,
|
158 |
-
"f1": 0.83
|
159 |
-
},
|
160 |
-
"medium": {
|
161 |
-
"tp": 15,
|
162 |
-
"fp": 7,
|
163 |
-
"fn": 2,
|
164 |
-
"precision": 0.68,
|
165 |
-
"recall": 0.88,
|
166 |
-
"f1": 0.77
|
167 |
-
},
|
168 |
-
"large": {
|
169 |
-
"tp": 5,
|
170 |
-
"fp": 2,
|
171 |
-
"fn": 1,
|
172 |
-
"precision": 0.71,
|
173 |
-
"recall": 0.83,
|
174 |
-
"f1": 0.76
|
175 |
-
}
|
176 |
-
}
|
177 |
}
|
178 |
-
}
|
179 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
15 |
+
|
16 |
+
import random
|
17 |
import datetime
|
18 |
import os
|
19 |
|
|
|
91 |
# TODO: Download external resources if needed
|
92 |
pass
|
93 |
|
94 |
+
|
95 |
def compute_from_payload(
|
96 |
+
self,
|
97 |
+
payload,
|
98 |
+
max_iou: float = 0.5,
|
99 |
+
filters={},
|
100 |
+
recognition_thresholds=[0.3, 0.5, 0.8],
|
101 |
+
area_ranges_tuples=None, # Optional parameter
|
102 |
+
debug: bool = False,
|
103 |
+
):
|
104 |
+
|
105 |
+
"""Returns the metrics"""
|
106 |
+
return self.dummy_values(area_ranges_tuples)
|
107 |
+
|
108 |
+
def dummy_values(self, area_ranges_tuples=None):
|
109 |
+
# Dummy randome values in the expected format that all new metrics need to return
|
110 |
+
# Default area ranges if not provided
|
111 |
+
default_area_ranges = [
|
112 |
+
("all", [0, 1e5**2]),
|
113 |
+
("small", [0**2, 6**2]),
|
114 |
+
("medium", [6**2, 12**2]),
|
115 |
+
("large", [12**2, 1e5**2]),
|
116 |
+
]
|
117 |
+
|
118 |
+
# Use default ranges if none are provided
|
119 |
+
if area_ranges_tuples is None:
|
120 |
+
area_ranges_tuples = default_area_ranges
|
121 |
+
|
122 |
+
# Generate random dummy values
|
123 |
+
def generate_random_values():
|
124 |
+
return {
|
125 |
+
"tp": random.randint(0, 100), # Random integer between 0 and 100
|
126 |
+
"fp": random.randint(0, 50), # Random integer between 0 and 50
|
127 |
+
"fn": random.randint(0, 50), # Random integer between 0 and 50
|
128 |
+
"precision": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0
|
129 |
+
"recall": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0
|
130 |
+
"f1": round(random.uniform(0.5, 1.0), 2) # Random float between 0.5 and 1.0
|
131 |
+
}
|
132 |
+
|
133 |
+
# Initialize output structure
|
134 |
+
dummy_output = {
|
135 |
"model_1": {
|
136 |
+
"overall": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
"per_sequence": {
|
138 |
+
"sequence_1": {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
}
|
140 |
+
}
|
141 |
}
|
142 |
+
|
143 |
+
# Populate only the ranges specified in area_ranges_tuples with random values
|
144 |
+
for range_name, _ in area_ranges_tuples:
|
145 |
+
dummy_output["model_1"]["overall"][range_name] = generate_random_values()
|
146 |
+
dummy_output["model_1"]["per_sequence"]["sequence_1"][range_name] = generate_random_values()
|
147 |
+
|
148 |
+
return dummy_output
|
149 |
+
|