hichem-abdellali commited on
Commit
f18fd10
·
verified ·
1 Parent(s): 2d4e41e

update the dummy example

Browse files
Files changed (1) hide show
  1. ref-metrics.py +53 -83
ref-metrics.py CHANGED
@@ -12,6 +12,8 @@
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
 
 
 
15
  import datetime
16
  import os
17
 
@@ -89,91 +91,59 @@ class UserFriendlyMetrics(evaluate.Metric):
89
  # TODO: Download external resources if needed
90
  pass
91
 
 
92
  def compute_from_payload(
93
- self,
94
- payload,
95
- max_iou: float = 0.5,
96
- filters={},
97
- recognition_thresholds=[0.3, 0.5, 0.8],
98
- debug: bool = False,
99
- ):
100
- """Returns the scores"""
101
- # this practically call _compute
102
- return self.dummy_values()
103
- # return calculate(predictions, references, max_iou)
104
-
105
- def dummy_values(self):
106
- return {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  "model_1": {
108
- "overall": {
109
- "all": {
110
- "tp": 50,
111
- "fp": 20,
112
- "fn": 10,
113
- "precision": 0.71,
114
- "recall": 0.83,
115
- "f1": 0.76
116
- },
117
- "small": {
118
- "tp": 15,
119
- "fp": 5,
120
- "fn": 2,
121
- "precision": 0.75,
122
- "recall": 0.88,
123
- "f1": 0.81
124
- },
125
- "medium": {
126
- "tp": 25,
127
- "fp": 10,
128
- "fn": 5,
129
- "precision": 0.71,
130
- "recall": 0.83,
131
- "f1": 0.76
132
- },
133
- "large": {
134
- "tp": 10,
135
- "fp": 5,
136
- "fn": 3,
137
- "precision": 0.67,
138
- "recall": 0.77,
139
- "f1": 0.71
140
- }
141
- },
142
  "per_sequence": {
143
- "sequence_1": {
144
- "all": {
145
- "tp": 30,
146
- "fp": 15,
147
- "fn": 7,
148
- "precision": 0.67,
149
- "recall": 0.81,
150
- "f1": 0.73
151
- },
152
- "small": {
153
- "tp": 10,
154
- "fp": 3,
155
- "fn": 1,
156
- "precision": 0.77,
157
- "recall": 0.91,
158
- "f1": 0.83
159
- },
160
- "medium": {
161
- "tp": 15,
162
- "fp": 7,
163
- "fn": 2,
164
- "precision": 0.68,
165
- "recall": 0.88,
166
- "f1": 0.77
167
- },
168
- "large": {
169
- "tp": 5,
170
- "fp": 2,
171
- "fn": 1,
172
- "precision": 0.71,
173
- "recall": 0.83,
174
- "f1": 0.76
175
- }
176
- }
177
  }
178
- },
179
  }
 
 
 
 
 
 
 
 
 
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
 
15
+
16
+ import random
17
  import datetime
18
  import os
19
 
 
91
  # TODO: Download external resources if needed
92
  pass
93
 
94
+
95
  def compute_from_payload(
96
+ self,
97
+ payload,
98
+ max_iou: float = 0.5,
99
+ filters={},
100
+ recognition_thresholds=[0.3, 0.5, 0.8],
101
+ area_ranges_tuples=None, # Optional parameter
102
+ debug: bool = False,
103
+ ):
104
+
105
+ """Returns the metrics"""
106
+ return self.dummy_values(area_ranges_tuples)
107
+
108
+ def dummy_values(self, area_ranges_tuples=None):
109
+ # Dummy randome values in the expected format that all new metrics need to return
110
+ # Default area ranges if not provided
111
+ default_area_ranges = [
112
+ ("all", [0, 1e5**2]),
113
+ ("small", [0**2, 6**2]),
114
+ ("medium", [6**2, 12**2]),
115
+ ("large", [12**2, 1e5**2]),
116
+ ]
117
+
118
+ # Use default ranges if none are provided
119
+ if area_ranges_tuples is None:
120
+ area_ranges_tuples = default_area_ranges
121
+
122
+ # Generate random dummy values
123
+ def generate_random_values():
124
+ return {
125
+ "tp": random.randint(0, 100), # Random integer between 0 and 100
126
+ "fp": random.randint(0, 50), # Random integer between 0 and 50
127
+ "fn": random.randint(0, 50), # Random integer between 0 and 50
128
+ "precision": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0
129
+ "recall": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0
130
+ "f1": round(random.uniform(0.5, 1.0), 2) # Random float between 0.5 and 1.0
131
+ }
132
+
133
+ # Initialize output structure
134
+ dummy_output = {
135
  "model_1": {
136
+ "overall": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  "per_sequence": {
138
+ "sequence_1": {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
  }
140
+ }
141
  }
142
+
143
+ # Populate only the ranges specified in area_ranges_tuples with random values
144
+ for range_name, _ in area_ranges_tuples:
145
+ dummy_output["model_1"]["overall"][range_name] = generate_random_values()
146
+ dummy_output["model_1"]["per_sequence"]["sequence_1"][range_name] = generate_random_values()
147
+
148
+ return dummy_output
149
+