# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import datetime import os import datasets import evaluate from seametrics.user_friendly.utils import calculate_from_payload import wandb _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} }\ @article{milan2016mot16, title={MOT16: A benchmark for multi-object tracking}, author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad}, journal={arXiv preprint arXiv:1603.00831}, year={2016} } """ _DESCRIPTION = """\ The MOT Metrics module is designed to evaluate multi-object tracking (MOT) algorithms by computing various metrics based on predicted and ground truth bounding boxes. It serves as a crucial tool in assessing the performance of MOT systems, aiding in the iterative improvement of tracking algorithms.""" _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. max_iou (`float`, *optional*): If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive. Default is 0.5. """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class UserFriendlyMetrics(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features( { "predictions": datasets.Sequence( datasets.Sequence(datasets.Value("float")) ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("float")) ), } ), # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"], ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed pass def compute_from_payload( self, payload, max_iou: float = 0.5, filters={}, recognition_thresholds=[0.3, 0.5, 0.8], area_ranges_tuples=None, # Optional parameter debug: bool = False, ): """Returns the metrics""" return self.dummy_values(area_ranges_tuples) def dummy_values(self, area_ranges_tuples=None): # Dummy randome values in the expected format that all new metrics need to return # Default area ranges if not provided default_area_ranges = [ ("all", [0, 1e5**2]), ("small", [0**2, 6**2]), ("medium", [6**2, 12**2]), ("large", [12**2, 1e5**2]), ] # Use default ranges if none are provided if area_ranges_tuples is None: area_ranges_tuples = default_area_ranges # Generate random dummy values def generate_random_values(): return { "tp": random.randint(0, 100), # Random integer between 0 and 100 "fp": random.randint(0, 50), # Random integer between 0 and 50 "fn": random.randint(0, 50), # Random integer between 0 and 50 "precision": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0 "recall": round(random.uniform(0.5, 1.0), 2), # Random float between 0.5 and 1.0 "f1": round(random.uniform(0.5, 1.0), 2) # Random float between 0.5 and 1.0 } # Initialize output structure dummy_output = { "model_1": { "overall": {}, "per_sequence": { "sequence_1": {} } } } # Populate only the ranges specified in area_ranges_tuples with random values for range_name, _ in area_ranges_tuples: dummy_output["model_1"]["overall"][range_name] = generate_random_values() dummy_output["model_1"]["per_sequence"]["sequence_1"][range_name] = generate_random_values() return dummy_output