File size: 4,359 Bytes
58ff7c0
f12b919
58ff7c0
 
f12b919
 
 
 
 
 
58ff7c0
71a8d2b
f12b919
 
 
7e7ac44
58ff7c0
 
8e5798a
71a8d2b
f12b919
 
9528b50
f12b919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5798a
 
f12b919
 
 
8e5798a
 
f12b919
8e5798a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12b919
 
8e5798a
 
 
 
69e13f0
f12b919
 
8e5798a
 
 
 
 
 
 
 
f12b919
8e5798a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
app_file: app.py
colorFrom: gray
colorTo: green
description: 'TODO: add a description here'
emoji: "\U0001F4DA"
pinned: false
runme:
  id: 01HPS3ASFJXVQR88985QNSXVN1
  version: v3
sdk: gradio
sdk_version: 3.19.1
tags:
  - evaluate
  - metric
title: mot-metrics
---

# How to Use

```python {"id":"01HPS3ASFHPCECERTYN7Z4Z7MN"}
>>> import evaluate
>>> from seametrics.fo_utils.utils import fo_to_payload
>>> b = fo_to_payload(
>>>         dataset="SENTRY_VIDEOS_DATASET_QA",
>>>         gt_field="ground_truth_det",
>>>         models=['volcanic-sweep-3_02_2023_N_LN1_ep288_TRACKER'],
>>>         sequence_list=["Sentry_2022_11_PROACT_CELADON_7.5M_MOB_2022_11_25_12_12_39"],
>>>         tracking_mode=True
>>>    )
>>> module = evaluate.load("SEA-AI/mot-metrics")
>>> res = module._calculate(b, max_iou=0.99)
>>> print(res)
{'Sentry_2022_11_PROACT_CELADON_7.5M_MOB_2022_11_25_12_12_39': {'volcanic-sweep-3_02_2023_N_LN1_ep288_TRACKER': {'idf1': 0.9543031226199543,
   'idp': 0.9804381846635368,
   'idr': 0.9295252225519288,
   'recall': 0.9436201780415431,
   'precision': 0.9953051643192489,
   'num_unique_objects': 2,
   'mostly_tracked': 1,
   'partially_tracked': 0,
   'mostly_lost': 1,
   'num_false_positives': 6,
   'num_misses': 76,
   'num_switches': 1,
   'num_fragmentations': 4,
   'mota': 0.9384272997032641,
   'motp': 0.5235835810268012,
   'num_transfer': 0,
   'num_ascend': 1,
   'num_migrate': 0}}}
```

## Metric Settings

The `max_iou` parameter is used to filter out the bounding boxes with IOU less than the threshold. The default value is 0.5. This means that if a ground truth and a predicted bounding boxes IoU value is less than 0.5, then the predicted bounding box is not considered for association. So, the higher the `max_iou` value, the more the predicted bounding boxes are considered for association.

## Output

The output is a dictionary containing the following metrics:

| Name                 | Description                                                                        |
| :------------------- | :--------------------------------------------------------------------------------- |
| idf1                 | ID measures: global min-cost F1 score.                                             |
| idp                  | ID measures: global min-cost precision.                                            |
| idr                  | ID measures: global min-cost recall.                                               |
| recall               | Number of detections over number of objects.                                       |
| precision            | Number of detected objects over sum of detected and false positives.               |
| num_unique_objects   | Total number of unique object ids encountered.                                     |
| mostly_tracked       | Number of objects tracked for at least 80 percent of lifespan.                     |
| partially_tracked    | Number of objects tracked between 20 and 80 percent of lifespan.                   |
| mostly_lost          | Number of objects tracked less than 20 percent of lifespan.                        |
| num_false_positives  | Total number of false positives (false-alarms).                                    |
| num_misses           | Total number of misses.                                                            |
| num_switches         | Total number of track switches.                                                    |
| num_fragmentations   | Total number of switches from tracked to not tracked.                              |
| mota                 | Multiple object tracker accuracy.                                                  |
| motp                 | Multiple object tracker precision.                                                 |

## Citations

```bibtex {"id":"01HPS3ASFJXVQR88985GKHAQRE"}
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}}
```

```bibtex {"id":"01HPS3ASFJXVQR88985KRT478N"}
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}}
```

## Further References

- [Github Repository - py-motmetrics](https://github.com/cheind/py-motmetrics/tree/develop)