Spaces:
Running
Running
File size: 13,584 Bytes
40c6d5b aee4926 2ea1288 40c6d5b aee4926 40c6d5b cd8d22b 6b58dcb cd8d22b 40c6d5b 6b58dcb c997355 40c6d5b aee4926 2ea1288 aee4926 20e96a5 d73e76d 40c6d5b ba20988 40c6d5b 76eeea1 40c6d5b 20e96a5 aee4926 20e96a5 52b3f36 268f02a 7122c7a 268f02a aee4926 0c6478d aee4926 4d254d9 432dae9 40c6d5b a98be6c ece64b1 cd8d22b 6b58dcb cd8d22b ece64b1 ff19c2d a98be6c 63e748f f4caf43 ece64b1 f7c3a58 a98be6c f4caf43 f7c3a58 6b58dcb b87860b 6b58dcb f7c3a58 6b58dcb f7c3a58 6b58dcb ece64b1 b87860b 6b58dcb ece64b1 6b58dcb ece64b1 a98be6c e318a9c a98be6c 6b58dcb a98be6c ece64b1 6b58dcb ece64b1 63e748f e318a9c 63e748f 6b58dcb ece64b1 f8639a1 f4caf43 6b58dcb f4caf43 ece64b1 f8639a1 f4caf43 f069532 f4caf43 844ef64 ece64b1 6b58dcb f4caf43 6b58dcb f4caf43 6b58dcb f4caf43 20e96a5 48b020e f4caf43 20e96a5 a98be6c 20e96a5 ece64b1 f4caf43 20e96a5 a98be6c 20e96a5 f0d7075 20e96a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import evaluate
import datasets
import motmetrics as mm
from motmetrics.metrics import (events_to_df_map,
obj_frequencies,
track_ratios)
import numpy as np
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}
}
"""
_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
algorithms by computing various metrics based on predicted and ground truth bounding
boxes. It serves as a crucial tool in assessing the performance of MOT systems,
aiding in the iterative improvement of tracking algorithms."""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
max_iou (`float`, *optional*):
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
Default is 0.5.
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class UserFriendlyMetrics(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
)
}),
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self,
payload,
max_iou: float = 0.5,
filters = {},
recognition_thresholds = [0.3, 0.5, 0.8],
debug: bool = False):
"""Returns the scores"""
# TODO: Compute the different scores of the module
return calculate_from_payload(payload, max_iou, filters, recognition_thresholds, debug)
#return calculate(predictions, references, max_iou)
def recognition(track_ratios, th = 0.5):
"""Number of objects tracked for at least 20 percent of lifespan."""
return track_ratios[track_ratios >= th].count()
def num_gt_ids(df):
"""Number of unique gt ids."""
return df.full["OId"].dropna().unique().shape[0]
def calculate(predictions,
references,
max_iou: float = 0.5,
recognition_thresholds: list = [0.3, 0.5, 0.8]
):
"""Returns the scores"""
try:
np_predictions = np.array(predictions)
except:
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
try:
np_references = np.array(references)
except:
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
if np_predictions.shape[1] != 7:
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
if np_references.shape[1] != 6:
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
if np_predictions[:, 0].min() <= 0:
raise ValueError("The frame number in the predictions should be a positive integer")
if np_references[:, 0].min() <= 0:
raise ValueError("The frame number in the references should be a positive integer")
num_frames = int(max(np_references[:, 0].max(), np_predictions[:, 0].max()))
acc = mm.MOTAccumulator(auto_id=True)
for i in range(1, num_frames+1):
preds = np_predictions[np_predictions[:, 0] == i, 1:6]
refs = np_references[np_references[:, 0] == i, 1:6]
C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou)
acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)
mh = mm.metrics.create()
summary = mh.compute(acc, metrics=['num_misses', 'num_false_positives', 'num_detections']).to_dict()
df = events_to_df_map(acc.events)
tr_ratios = track_ratios(df, obj_frequencies(df))
unique_gt_ids = num_gt_ids(df)
namemap = {"num_misses": "fn",
"num_false_positives": "fp",
"num_detections": "tp"}
for key in list(summary.keys()):
if key in namemap:
summary[namemap[key]] = float(summary[key][0])
summary.pop(key)
else:
summary[key] = float(summary[key][0])
summary["num_gt_ids"] = unique_gt_ids
for th in recognition_thresholds:
recognized = recognition(tr_ratios, th)
summary[f'recognized_{th}'] = int(recognized)
return summary
def build_metrics_template(models, filters):
metrics_dict = {}
for model in models:
metrics_dict[model] = {}
metrics_dict[model]["all"] = {}
for filter, filter_ranges in filters.items():
metrics_dict[model][filter] = {}
for filter_range in filter_ranges:
filter_range_name = filter_range[0]
metrics_dict[model][filter][filter_range_name] = {}
return metrics_dict
def calculate_from_payload(payload: dict,
max_iou: float = 0.5,
filters = {},
recognition_thresholds = [0.3, 0.5, 0.8],
debug: bool = False):
if not isinstance(payload, dict):
try:
payload = payload.to_dict()
except Exception as e:
raise ValueError(
"The payload should be a dictionary or a compatible object"
) from e
gt_field_name = payload['gt_field_name']
models = payload['models']
sequence_list = payload['sequence_list']
if debug:
print("gt_field_name: ", gt_field_name)
print("models: ", models)
print("sequence_list: ", sequence_list)
metrics_per_sequence = {}
metrics_global = build_metrics_template(models, filters)
for sequence in sequence_list:
metrics_per_sequence[sequence] = {}
frames = payload['sequences'][sequence][gt_field_name]
all_formated_references = {"all": []}
for filter, filter_ranges in filters.items():
all_formated_references[filter] = {}
for filter_range in filter_ranges:
filter_range_name = filter_range[0]
all_formated_references[filter][filter_range_name] = []
for frame_id, frame in enumerate(frames):
for detection in frame:
index = detection['index']
x, y, w, h = detection['bounding_box']
all_formated_references["all"].append([frame_id+1, index, x, y, w, h])
for filter, filter_ranges in filters.items():
filter_value = detection[filter]
for filter_range in filter_ranges:
filter_range_name, filter_range_limits = filter_range[0], filter_range[1]
if filter_value >= filter_range_limits[0] and filter_value <= filter_range_limits[1]:
all_formated_references[filter][filter_range_name].append([frame_id+1, index, x, y, w, h])
metrics_per_sequence[sequence] = build_metrics_template(models, filters)
for model in models:
frames = payload['sequences'][sequence][model]
formated_predictions = []
for frame_id, frame in enumerate(frames):
for detection in frame:
index = detection['index']
x, y, w, h = detection['bounding_box']
confidence = 1
formated_predictions.append([frame_id+1, index, x, y, w, h, confidence])
if debug:
print("sequence/model: ", sequence, model)
print("formated_predictions: ", formated_predictions)
print("formated_references: ", all_formated_references)
if len(formated_predictions) == 0:
metrics_per_sequence[sequence][model] = "Model had no predictions."
elif len(all_formated_references["all"]) == 0:
metrics_per_sequence[sequence][model] = "No ground truth."
else:
sequence_metrics = calculate(formated_predictions, all_formated_references["all"], max_iou=max_iou, recognition_thresholds = recognition_thresholds)
sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds)
metrics_per_sequence[sequence][model]["all"] = sequence_metrics
metrics_global[model]["all"] = sum_dicts(metrics_global[model]["all"], sequence_metrics)
metrics_global[model]["all"] = realize_metrics(metrics_global[model]["all"], recognition_thresholds)
for filter, filter_ranges in filters.items():
for filter_range in filter_ranges:
filter_range_name = filter_range[0]
sequence_metrics = calculate(formated_predictions, all_formated_references[filter][filter_range_name], max_iou=max_iou, recognition_thresholds = recognition_thresholds)
sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds)
metrics_per_sequence[sequence][model][filter][filter_range_name] = sequence_metrics
metrics_global[model][filter][filter_range_name] = sum_dicts(metrics_global[model][filter][filter_range_name], sequence_metrics)
metrics_global[model][filter][filter_range_name] = realize_metrics(metrics_global[model][filter][filter_range_name], recognition_thresholds)
output = {"global": metrics_global, "per_sequence": metrics_per_sequence}
return output
def sum_dicts(dict1, dict2):
"""
Recursively sums the numerical values in two nested dictionaries.
"""
result = {}
for key in dict1.keys() | dict2.keys(): # Union of keys from both dictionaries
val1 = dict1.get(key, 0)
val2 = dict2.get(key, 0)
if isinstance(val1, dict) and isinstance(val2, dict):
# If both values are dictionaries, recursively sum them
result[key] = sum_dicts(val1, val2)
elif isinstance(val1, (int, float)) and isinstance(val2, (int, float)):
# If both are numbers, sum them
result[key] = val1 + val2
else:
# If only one dictionary has the key, take the non-zero value
result[key] = val1 if val1 != 0 else val2
return result
def realize_metrics(metrics_dict,
recognition_thresholds):
"""
calculates metrics based on raw metrics
"""
metrics_dict["precision"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fp"])
metrics_dict["recall"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fn"])
metrics_dict["f1"] = 2*metrics_dict["precision"]*metrics_dict["recall"]/(metrics_dict["precision"]+metrics_dict["recall"])
for th in recognition_thresholds:
metrics_dict[f"recognition_{th}"] = metrics_dict[f"recognized_{th}"]/metrics_dict["num_gt_ids"]
return metrics_dict
|