File size: 8,701 Bytes
40c6d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
adaef8a
 
40c6d5b
adaef8a
 
ac2ff4a
 
adaef8a
 
40c6d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee4926
40c6d5b
 
 
 
 
 
 
 
 
 
 
adaef8a
 
 
 
 
 
 
 
 
 
40c6d5b
 
adaef8a
40c6d5b
 
 
 
 
 
 
adaef8a
 
 
 
 
 
 
 
40c6d5b
 
adaef8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0175937
 
 
 
 
 
fa350f6
 
 
22a0855
0175937
 
 
 
 
 
 
fa350f6
 
 
adaef8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a0855
adaef8a
 
 
 
22a0855
adaef8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a0855
 
adaef8a
 
 
 
 
 
 
 
 
 
 
 
22a0855
 
adaef8a
 
 
 
 
 
40c6d5b
adaef8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import datetime
import os

import datasets
import evaluate
from seametrics.user_friendly.utils import calculate_from_payload

import wandb

_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
  title={MOT16: A benchmark for multi-object tracking},
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
  journal={arXiv preprint arXiv:1603.00831},
  year={2016}
}
"""

_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT) 
algorithms by computing various metrics based on predicted and ground truth bounding 
boxes. It serves as a crucial tool in assessing the performance of MOT systems, 
aiding in the iterative improvement of tracking algorithms."""


_KWARGS_DESCRIPTION = """

Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
    max_iou (`float`, *optional*):
        If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
        Default is 0.5.
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class UserFriendlyMetrics(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(
                        datasets.Sequence(datasets.Value("float"))
                    ),
                    "references": datasets.Sequence(
                        datasets.Sequence(datasets.Value("float"))
                    ),
                }
            ),
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(
        self,
        payload,
        max_iou: float = 0.5,
        filters={},
        recognition_thresholds=[0.3, 0.5, 0.8],
        debug: bool = False,
    ):
        """Returns the scores"""
        # TODO: Compute the different scores of the module
        return calculate_from_payload(
            payload, max_iou, filters, recognition_thresholds, debug
        )
        # return calculate(predictions, references, max_iou)

    def wandb(
        self,
        results,
        wandb_section: str = None,
        wandb_project="user_friendly_metrics",
        log_plots: bool = True,
        debug: bool = False,
    ):
        """
        Logs metrics to Weights and Biases (wandb) for tracking and visualization, including categorized bar charts for global metrics.

        Args:
            results (dict): Results dictionary with 'global' and 'per_sequence' keys.
            wandb_section (str, optional): W&B section for metric grouping. Defaults to None.
            wandb_project (str, optional): The name of the wandb project. Defaults to 'user_friendly_metrics'.
            log_plots (bool, optional): Generates categorized bar charts for global metrics. Defaults to True.
            debug (bool, optional): Logs detailed summaries and histories to the terminal console. Defaults to False.
        """

        current_datetime = datetime.datetime.now()
        formatted_datetime = current_datetime.strftime("%Y-%m-%d_%H-%M-%S")
        wandb.login(key=os.getenv("WANDB_API_KEY"))

        run = wandb.init(
            project=wandb_project,
            name=f"evaluation-{formatted_datetime}",
            reinit=True,
            settings=wandb.Settings(silent=not debug),
        )

        categories = {
            "user_friendly_metrics": {
                "mostly_tracked_score_0.3",
                "mostly_tracked_score_0.5",
                "mostly_tracked_score_0.8",
            },
            "evaluation_metrics_dev": {
                "f1",
                "recall",
                "precision",
            },
            "user_friendly_metrics_dev": {
                "mostly_tracked_count_0.3",
                "mostly_tracked_count_0.5",
                "mostly_tracked_count_0.8",
                "unique_obj_count",
            },
            "predictions_summary": {
                "fp",
                "tp",
                "fn",
            },
        }

        chart_data = {key: [] for key in categories.keys()}

        # Log global metrics
        if "global" in results:
            for global_key, global_metrics in results["global"].items():
                for metric, value in global_metrics["all"].items():
                    log_key = (
                        f"{wandb_section}/global/{global_key}/{metric}"
                        if wandb_section
                        else f"global/{global_key}/{metric}"
                    )
                    run.log({log_key: value})

                    if debug:
                        print(f" {log_key} = {value}")

                    for category, metrics in categories.items():
                        if metric in metrics:
                            chart_data[category].append([metric, value])
            print("----------------------------------------------------")

        if log_plots:
            for category, data in chart_data.items():
                if data:
                    table_data = [[label, value] for label, value in data]
                    table = wandb.Table(data=table_data, columns=["metrics", "value"])
                    run.log(
                        {
                            f"{category}_bar_chart": wandb.plot.bar(
                                table,
                                "metrics",
                                "value",
                                title=f"{category.replace('_', ' ').title()}",
                            )
                        }
                    )

        if "per_sequence" in results:
            sorted_sequences = sorted(
                results["per_sequence"].items(),
                key=lambda x: next(iter(x[1].values()), {}).get("all", {}).get("f1", 0),
                reverse=True,  # Set to True for descending order
            )

            for sequence_name, sequence_data in sorted_sequences:
                for seq_key, seq_metrics in sequence_data.items():
                    for metric, value in seq_metrics["all"].items():
                        log_key = (
                            f"{wandb_section}/per_sequence/{sequence_name}/{seq_key}/{metric}"
                            if wandb_section
                            else f"per_sequence/{sequence_name}/{seq_key}/{metric}"
                        )
                        run.log({log_key: value})
                        if debug:
                            print(f" {log_key} = {value}")
                print("----------------------------------------------------")

        if debug:
            print("\nDebug Mode: Logging Summary and History")
            print(f"Results Summary:\n{results}")
            print(f"WandB Settings:\n{run.settings}")
            print("All metrics have been logged.")

        run.finish()